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1 Notation
Let A, B, C be sets. The function arrow is right associative. That is to say f : A → B → C has to be parsed
as f : A → (B → C). Meaning that f is a function from A to the set of all functions with domain B and
codomain C.
Let a ∈ A, b ∈ B, c ∈ C. Function application is denoted by a white space. That is to say f a has to be
parsed as f applied to a. The white space is also sometimes removed, in the case of two brackets () wrapping
the thing the function is applied to. Function application is left associative. That is to say that f a b c has
to be parsed as (((f a) b) c).
The $ sign denotes infix function application. The infix priority of $ is set such that it is parsed after equal
signs and before all other infix operators. For example the expression

3 = A ◦ B $ v + 3 · w, (1)

where A, B, v, w are such that the expression makes sense, has to be parsed as

3 = (A ◦ B) (v + 3 · w). (2)

2 Finite Time Case
Throughout this section let X, Y, U Hilbert spaces and A ∈ L(X), B ∈ L(U, X), C ∈ L(X, Y ), D ∈ L(U, Y ).
Let L≥0(X) be the set of all symmetric and non-negative linear operators X → X. Let

S := {(k, N) ∈ N2 : k < N} (3)

and range : N → N → P N
range n m := {k ∈ N : n ≤ k ≤ m}. (4)

Definition 1 (Solution map). Define soln : S → Mor Set (Mor Set = the “set” of all functions between
sets) by

soln(k, N) : range k N → X → (range k (N − 1) → U) → (range k N → X)
soln(k, N) x0 u k := x0,

soln(k, N) x0 u (n + 1) := A (soln(k, N) x0 u n) + B(u n)
(5)
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Proposition 2. Let (k, N) ∈ S, x0 ∈ X and u1, u2 ∈ range k(N − 1) → U . Let x1 := soln(k, N) x0 u1,
x2 := soln(k, N) x0 u2 and x := soln(k, N) 0 (u1 − u2). Then

x1 − x2 = x. (6)

Proof. By induction:
x1 k − x2 k = x0 − x0 = 0 = x k. (7)

Assume that the assertion in the proposition is true for n ∈ range k (N − 1). Then

x1 (n + 1) − x2 (n + 1) = A(x1 n) + B(u1 n) − A(x2 n) − B(u2 n)
= A(x1 n − x2 n) + B(u1 n − u2 n)
= A (x n) − B((u1 − u2) n) = x(n + 1).

(8)

Proposition 3. Let (k, N) ∈ S. Then T : ℓ2(range k (N − 1), U) → ℓ2(range k N, X) defined by T :=
soln(k, N) 0 is linear and bounded.

Proof. Let u ∈ ℓ2(range k (N − 1), U) and x := T u. Then for all n ∈ range(k + 1) N :

x n =
n−k−1∑

j=0
Aj(B u(n − j − 1)). (9)

The proof is by induction:
x (k + 1) = A(x k) + B(u k) = B(u k). (10)

Let n ∈ range(k + 1) (N − 1) and assume that the above equation for x n is true. Then

x (n + 1) = A (x n) + B (u n)

=
n−k−1∑

j=0
Aj+1(B u(n − j − 1)) + B(u n)

=
(n+1)−k−1∑

j=1
Aj(B u((n + 1) − j − 1)) + B(u n)

=
(n+1)−k−1∑

j=0
Aj(B u((n + 1) − j − 1)).

(11)

Since A and B and the evaluation maps are linear and bounded it follows that pi ◦ T , where pi is the i-th
coordinate projection, is linear and bounded for all i ∈ {1, . . . , N}, which in turn implies the linearity and the
boundedness of T .

Definition 4 (Output map). Define out : S → Mor Set by

out(k, N) : X → (range k (N − 1) → U) → (range k N → Y )
out(k, N) x0 u := C ◦ (soln(k, N) x0 u) + D ◦ u.

(12)

Definition 5 (Cost functional). Define J : L≥0(X) → S → Mor Set by

J P0 (k, N) : X → (range k (N − 1) → U) → [0, ∞)

J P0 (k, N) x0 u :=
N−1∑
n=k

(
∥y n∥2 + ∥u n∥2)

+ ⟨(x N, P0(x N)⟩,

where y := out(k, N) x0 u, x := soln(k, N) x0 u.

(13)

In the remainder of this subsection let N ∈ N be fixed.

Proposition 6 (Existence and uniqueness of minimizer). For all P0 ∈ L≥0(X), k ∈ range 1 (N −1), x0 ∈
X : J P0 (k, N) x0 has a unique minimizer.
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Proof. Let P0 ∈ P0 ∈ L≥0(X) and k ∈ range 1 (N − 1). Let H := X × ℓ2(range k (N − 1), Y ) ×
ℓ2(range k (N − 1), U). Define V : X → P H by

V x0 := {(x, y, u) ∈ H : x =
√

P0(soln k x0 u N), y = out k x0 u}. (14)

Then for all x0 ∈ X finding a minimum of J P0 (k, N) x0 is the same as finding a minimum of the norm
squared on V x0 ̸= ∅.
Now V 0 is a closed subspace of H, because it is the graph of a bounded linear operator (follows from
proposition 3).
Furthermore ∀x0 ∈ X : V x0 = v + V 0, where v ∈ V x0 arbitrary (follows from proposition 2). Let P be
the orthogonal projection onto the orthogonal complement of V 0. Then, by a standard result, V x0 contains
a unique element with minimal norm given by P v0 where v0 ∈ V x0 is arbitrary.

Definition 7 (Minimizer map). Define M : L≥0(X) → range 1 (N − 1) → Mor Set by letting M P0 k :
X → (range k (N − 1) → U) be the map that sends x0 to the unique minimizer of J P0 (k, N) x0.

Proposition 8 (Bellmans principle of optimality). Let x0 ∈ X, P0 ∈ L≥0(X) and k ∈ range 1 (N − 1).
Let u0 := M P0 1 x0 and u1 := M P0 k (soln(1, N) x0 u0 k). Then for all n ∈ range k (N − 1):

u0 n = u1 n. (15)

Proof. Let k ∈ range 1 (N−1) and u ∈ range 1 (N−1) → U . Let y := out(1, N) x0 u, x := soln(1, N) x0 u.
Then

J P0 (1, N) x0 u =
N−1∑
n=1

(
∥y n∥2 + ∥u n∥2)

+ ⟨(x N, P0(x N)⟩

=
k−1∑
n=1

(
∥y n∥2 + ∥u n∥2)

+ J P0 (k, N) (x k) u|...

(16)

The first term and the value of x k is independent of the values of u for indices strictly larger than k−1. Define
ũ : range 1 (N − 1) → U by ũ j := u0 j if j < k and u1 j else. Then J P0 (1, N) x0 ũ ≤ J P0 (1, N) x0 u0
by definition of the minimizer and the above equation shows the reverse inequality. The uniqueness of the
minimizer implies the desired result.

Proposition 9. Let P0 ∈ L(X) self-adjoint and non-negative. Let x0 ∈ X. Define G : U → [0, ∞) by

G u := ∥C x0 + D u∥2 + ∥u∥2 + ⟨P0(A x0 + B u), (A x0 + B u)⟩. (17)

Then G has a unique global minimum at

um := −(Q−1 ◦ R) x0 (18)

and
G um = ⟨x0, (C∗ ◦ C + A∗ ◦ P0 ◦ A − R∗ ◦ Q−1 ◦ R) x0⟩, (19)

where R, Q are defined below in the proof.

Proof. Let u ∈ U , then

G u = ⟨C x0, C x0⟩ + ⟨u, (D∗ ◦ D) u⟩ + 2 Re⟨(D∗ ◦ C) x0, u⟩ + ⟨u, u⟩
+ ⟨(P0 ◦ A) x0, Ax0⟩ + 2 Re⟨(B∗ ◦ P0 ◦ A) x0, u⟩ + ⟨u, (B∗ ◦ P0 ◦ B) u⟩
= ⟨C x0, C x0⟩ + ⟨(P0 ◦ A) x0, Ax0⟩︸ ︷︷ ︸

=:q

+ 2 Re⟨(D∗ ◦ C + B∗ ◦ P0 ◦ A)︸ ︷︷ ︸
=:R

x0, u⟩

+ ⟨u, (D∗ ◦ D + I + B∗ ◦ P0 ◦ B)︸ ︷︷ ︸
=:Q

u⟩.

(20)

Note that Q is symmetric and Q > 0 (hence it is invertible). It is left to complete the square: For all u, h ∈ U :

⟨u − h, Q(u − h)⟩ = ⟨u, Qu⟩ − 2 Re⟨u, Qh⟩ + ⟨h, Qh⟩. (21)

3



And so in particular: Let um := −(Q−1 ◦ R)x0 and y0 := q − ⟨um, Q um⟩, then for all u ∈ U :

G u = ⟨u − um, Q(u − um)⟩ + y0. (22)

Therefore G has a global minimum at um with value y0.

Proposition 10 (Main Theorem). Let P0 ∈ L(X) self-adjoint and non-negative and x0 ∈ X. Let u :=
M P0 1 x0. Let x := soln(1, N) x0 u. Let P : range 1 N → L(X) defined by P N := P0 and

P k := C∗ ◦ C + A∗ ◦ P (k + 1) ◦ A

− (C∗ ◦ D + A∗ ◦ P (k + 1) ◦ B)
◦ (D∗ ◦ D + I + B∗ ◦ P (k + 1) ◦ B)−1

◦ (D∗ ◦ C + B∗ ◦ P (k + 1) ◦ A).

(23)

Then for all k ∈ range 1 (N − 1):

u k = −(D∗ ◦ D + I + B∗ ◦ P (k + 1) ◦ B)−1 ◦ (D∗ ◦ C + B∗ ◦ P (k + 1) ◦ A) $ x k (24)

and
J P0 (k, N) (x k) f = ⟨x k, P k (x k)⟩, (25)

where f : range k (N − 1) → U, f j := u j (f is the optimal input for the cost to go). In particular

J P0 (1, N) x0 u = ⟨x0, P 1 x0⟩. (26)

Proof. By Bellmans principle of optimality u (N − 1) = M P0 (N − 1) (x (N − 1)) (N − 1). The right hand
side matches the formula in the proposition by the preceding proposition. The other assertion (for the N − 1
case) also follows from that proposition.
Assume that the conclusion of the proposition holds for k ∈ {2, . . . , N − 1}. Let v ∈ U and define f :
range(k − 1) (N − 1) → U by f (k − 1) := v and f j := u j. Then by definition and the assumption

J P0 (k − 1, N) (x(k − 1)) f =
(
∥C (x(k − 1)) + D v∥2 + ∥v∥2)

+ ⟨x k, P k (x k)⟩ (27)

and P k is bounded, self-adjoint and non-negative. Again by Bellmans principle of optimality u (k − 1) =
M P0 (k − 1) (x (k − 1)) (k − 1). The right hand side is given by the formula in the proposition by the
preceding proposition and the above equation. The preceding proposition also concludes that J P0 (k −
1, N) (x(k − 1)) u = ⟨x(k − 1), P (k − 1)(x(k − 1))⟩.

3 Infinite Time Case
Let X, Y, U Hilbert spaces and A ∈ L(X), B ∈ L(U, X), C ∈ L(X, Y ), D ∈ L(U, Y ). In this section N does
not contain 0.

Definition 11. Define soln∞ : X → (N → U) → (N → X) by

soln∞ x0 u 1 := x0

soln∞ x0 u (n + 1) := A (soln∞ x0 u n) + B(u n).
(28)

Define out∞ : X → (N → U) → (N → Y ) by

out∞ x0 u := C ◦ (soln∞ x0 u) + D ◦ u. (29)

Consider the cost functional J∞ : X → ℓ2(N, U) → [0, ∞] defined by

J∞ x0 u :=
∞∑

n=1

(
∥ out∞ x0 u n∥2 + ∥u n∥2)

. (30)

Definition 12 (Optimizability). The discrete time system is called optimizable if for every x0 ∈ X there is
u ∈ ℓ2(N, U) with J∞ x0 u < ∞.

Proposition 13 (Existence and uniqueness of minimizer). Assume that the system is optimizable, then
J∞ x0 has a unique minimizer for all x0 ∈ X.
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Proof. The proof is almost the same as in the finite time case (only the deviation is written here). Let
H := ℓ2(N, Y ) × ℓ2(N, U). Define V : X → P H by

V x0 := {(y, u) ∈ H : y = out∞ x0 u}. (31)

By the optimizability ∀x0 ∈ X : V x0 ̸= ∅. In particular V 0 is a subspace of H. Furthermore V x0 = v0+V 0
for v0 ∈ V x0 arbitrary. V 0 is closed: Let (y, u) : N → V 0 convergent to (y0, u0) ∈ H. Let i ∈ N and pi the
i-th coordinate projection. Then pi ◦y converges to pi y0 since ℓ2 convergence implies pointwise convergence.
Now equation 9 (adapted to the infinite time case) shows that pi ◦ y converges to pi(out∞ 0 u0). Since i was
arbitrary this implies that y0 = out∞ 0 u0 and therefore V 0 is closed. The remainder of the proof is exactly
the same as in the finite case.

Proposition 14. Let T : N → L(X) be an increasing sequence of symmetric, non-negative operators with

∀x ∈ X∃M ∈ (0, ∞) : ∀n ∈ N : ⟨T n x, x⟩ ≤ M. (32)

Then T converges strongly to T∞ ∈ L≥0(X) with T∞ ≥ T n for all n ∈ N.

Proof. T is uniformly bounded, because the condition on T implies the uniform boundedness of
√

◦ T
via the uniform boundedness principle, which in turn implies the uniform boundedness of T (because of the
C∗-identity). Now for all x0 ∈ X

lim
n→∞

⟨x0, T n x0⟩ (33)

exists and is ≥ 0, because the sequence is monotonically increasing and bounded from above. The polarisation
identity together with the above implies, that ∀x0, x1 ∈ X :

lim
n→∞

⟨x0, T n x1⟩ (34)

exists. Therefore s : X × X → K, s x0 x1 := limn→∞⟨x0, T n x1⟩ is a well defined, conjugate symmetric,
positive semi-definite, sesquilinear form. Furthermore for all x0, x1 ∈ X:

|s x0 x1| = lim
n→∞

|⟨x0, T n x1⟩| ≤ sup
n∈N

∥T n∥ · ∥x0∥ · ∥x1∥. (35)

Therefore s is continuous and so there exists a symmetric and non-negative operator T∞ ∈ L(X) with for all
x0, x1 ∈ X:

s x0 x1 = ⟨x0, T∞ x1⟩. (36)

Evidently T∞ ≥ T n for all n ∈ N. Define S : N → L≥0(X) by S n := T∞ − T n. Then S → 0 in the weak
operator topology. For all n ∈ N and x ∈ X:

∥S n x∥2 ≤ sup
m∈N

∥S m∥ · ⟨S n x, x⟩. (37)

Which implies that T → T∞ strongly (the inequality in the above equation follows from the Cauchy-Schwarz
inequality and using the

√
).

Definition 15. Define T : N → L(X) as follows: T 1 := 0 and

T N := C∗ ◦ C + A∗ ◦ T (N − 1) ◦ A

− (C∗ ◦ D + A∗ ◦ T (N − 1) ◦ B)
◦ (D∗ ◦ D + I + B∗ ◦ T (N − 1) ◦ B)−1

◦ (D∗ ◦ C + B∗ ◦ T (N − 1) ◦ A).

(38)

Proposition 16. For all N ∈ N:

1. ∀x0 ∈ X : ⟨x0, T N x0⟩ = infu∈ℓ2(range 1 (N−1),U) J 0 (1, N) x0 u.

2. 0 ≤ T N ≤ T (N + 1).
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Proof. To the first point: Let N ∈ N. Define P : range 1 N → L(X) by P j := T (N + 1 − j), then
evidently P N = 0 and P 1 = T N . Furthermore by definition for all j ∈ range 1 (N − 1)

P j = C∗ ◦ C + A∗ ◦ P (j + 1) ◦ A

− (C∗ ◦ D + A∗ ◦ P (j + 1) ◦ B)
◦ (D∗ ◦ D + I + B∗ ◦ P (j + 1) ◦ B)−1

◦ (D∗ ◦ C + B∗ ◦ P (j + 1) ◦ A).

(39)

The main theorem of the last section concludes. The second point is a consequence of the first.

Proposition 17 (Main theorem). Assume that the discrete time system is optimizable. Then

1. T converges strongly to Π ∈ L≥0(X) with Π ≥ T n for all n ∈ N.

2. Π satisfies the algebraic riccati equation (ARE):

Π = C∗ ◦ C + A∗ ◦ Π ◦ A

− (C∗ ◦ D + A∗ ◦ Π ◦ B)
◦ (D∗ ◦ D + I + B∗ ◦ Π ◦ B)−1

◦ (D∗ ◦ C + B∗ ◦ Π ◦ A).

(40)

3. Any other symmetric non-negative solution Π2 to the ARE satisfies Π ≤ Π2.

4. For all x0 ∈ X: Define ũ : N → U by

ũ k := −(D∗ ◦ D + I + B∗ ◦ Π ◦ B)−1 ◦ (D∗ ◦ C + B∗ ◦ Π ◦ A) $ (soln∞ x0 ũ k). (41)

Then
inf

u∈ℓ2
J∞ x0 u = J∞ x0 ũ = ⟨x0, Π x0⟩. (42)

Proof. The first assertion follows from the optimizability and the preceding two propositions. That Π solves
the ARE follows from the definition of T and the strong convergence.
To “4.”: Let x0 ∈ X. For all N ∈ N :

⟨x0, T N x0⟩ = inf
u∈ℓ2

J 0 (1, N) x0 u ≤ inf
u∈ℓ2

J∞ x0 u. (43)

This implies that ⟨x0, Π x0⟩ ≤ infu∈ℓ2 J∞ x0 u. On the other hand

inf
u∈ℓ2

J∞ x0 u ≤ J∞ x0 ũ = lim
N→∞

J 0 (1, N) x0 ũ|... ≤ lim
N→∞

J Π (1, N) x0 ũ|... = ⟨x0, Π x0⟩. (44)

Where the second inequality is due to the fact that Π is non-negative and the last equality due to the fact
that Π solves the ARE together with the main theorem of the preceding section. The fact that ũ ∈ ℓ2 follows
from

∑∞
n=1 ∥ũ n∥2 ≤ limN→∞ J Π (1, N) x0 ũ|... < ∞.

To “3.”: Let x0 ∈ X and define ũ as in point “4.” of the proposition, but with Π2 in place of Π. Then

⟨x0, Π x0⟩ = inf
u∈ℓ2

J∞ x0 u ≤ J∞ x0 ũ = lim
N→∞

J 0 (1, N) x0 ũ|...

≤ lim
N→∞

J Π2 (1, N) x0 ũ|... = ⟨x0, Π2 x0⟩.
(45)

Therefore Π ≤ Π2.

Proposition 18. Let Π2 ∈ L≥0(X) be a solution to the ARE. Then the system is optimizable.

Proof. Let x0 ∈ X and define ũ as in point “4.” of the preceding proposition, but with Π2 in place of Π.
Then

J∞ x0 ũ = lim
N→∞

J 0 (1, N) x0 ũ|...

≤ lim
N→∞

J Π2 (1, N) x0 ũ|... = ⟨x0, Π2 x0⟩ < ∞.
(46)
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