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The talk is based on the results from section 4.1 titled “Solutions of non-homogeneous differential equa-

tions” of [TW09].

1 The Inhomogeneous Initial Value Problem (iIVP)
Throughout this section let:

1. X (state space) and U (input space) Banach spaces,

2. T a C0-semigroup on X with generator A,

3. B ∈ L(U,X).

Definition 1.1 (Types of Solutions). A function x : [0,∞)→ X is called a

• Classical Solution of the iIVP associated to (A,B) with initial value x0 ∈ dom(A) and input u ∈
C([0,∞), U) if:

1. x ∈ C1([0,∞), X),
2. x(0) = x0,
3. ∀t ∈ [0,∞) : x(t) ∈ dom(A) and

ẋ(t) = Ax(t) +Bu(t).

• Strong Solution1 of the iIVP associated to (A,B) with initial value x0 ∈ X and input u ∈ L1
loc([0,∞), U)

if:

1. x ∈ C([0,∞), X),
2. x ∈ L1

loc([0,∞), Y ), where Y := (dom(A), ∥ · ∥gr(A)),
1In [TW09] strong solutions are simply called solutions (in X).
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3. ∀t ∈ [0,∞) :

x(t) = x0 +
∫ t

0
Ax(s) +Bu(s)ds.

• Mild Solution of the iIVP associated to (A,B) with initial value x0 ∈ X and input u ∈ L1
loc([0,∞), U)

if:

1. x ∈ C([0,∞), X),
2. ∀t ∈ [0,∞) :

∫ t

0 x(s)ds ∈ dom(A) and

x t = x0 +A

∫ t

0
x(s)ds+

∫ t

0
Bu(s)ds.

Proposition 1.2.
classical solution⇒ strong solution⇒ mild solution.

Lemma 1.3. Define Φ : [0,∞)→ L(L1
loc([0,∞), U), X) by

Φ(t)u :=
∫ t

0
T (t− s)Bu(s)ds. (1.1)

Then Φ is well-defined and strongly continuous.

Proof. To show well-definedness: Let u ∈ L1
loc([0,∞) and ∈ [0,∞). Then

∥
∫ t

0
T (t− s)Bu(s)ds∥ ≤ sup

s∈[0,t]
∥T (s)∥ ·

∫ t

0
∥u(s)∥ds.

To show strong continuity: Let t ∈ [0,∞) and δ > 0. Then

Φ(t+ δ)u− Φ(t)u =
∫ t+δ

0
T (t+ δ − s)Bu(s)ds−

∫ t

0
T (t− s)Bu(s)ds

=
∫ t

0
(T (t+ δ − s)− T (t− s))Bu(s)ds+

∫ t+δ

t

T (t+ δ − s)Bu(s)ds

= (T (δ)− I)Φ(t)u+
∫ t+δ

t

T (t+ δ − s)Bu(s)ds.

The norm of the first summand can be made small since T is strongly continuous and the norm of the second
summand by the dominated convergence theorem. On the other hand if t− δ ≥ 0, then

Φ(t− δ)u− Φ(t)u =
∫ t−δ

0
T (t− δ − s)Bu(s)ds−

∫ t

0
T (t− s)Bu(s)ds

=
∫ t−δ

0
(T (t− δ − s)− T (t− s))Bu(s)ds−

∫ t

t−δ

T (t− s)Bu(s)ds

and both summands can be seen to converge to 0 as δ → 0 by Lebesgues theorem of dominated convergence.

Theorem 1.4 (Existence and Uniqueness of Mild Solutions: the Principle of Duhamel). Define x :
[0,∞)×X × L1

loc([0,∞), U)→ X by

x(t, x0, u) := T (t)x0 +
∫ t

0
T (t− s)Bu(s)ds︸ ︷︷ ︸

=Φ(t)u

. (1.2)

Let x0 ∈ X and u ∈ L1
loc([0,∞), U). Then x(·, x0, u) is the unique mild solution to the iIVP associated to

(A,B) with input u and initial value x0.
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Proof. Let x := x(·, x0, u). The continuity of x follows from the fact that Φ and T are strongly continuous.
Let t ∈ [0,∞): Then ∫ t

0
x(s)ds =

∫ t

0
T (s)x0ds+

∫ t

0

∫ s

0
T (s− σ)Bu(σ)dσds.

The first summand is in the domain of A and A(
∫ t

0 T (s)x0ds) = T (t)x0−x0 by a well known result. For the
second summand: Let

S := {(s, σ) ∈ [0, t]2 : 0 ≤ s ≤ t, 0 ≤ σ ≤ s}.

Then, using Fubinis-Theorem and the substitution τ 7→ τ − σ∫ t

0

∫ s

0
T (s− σ)Bu(σ)dσds =

∫
[0,t]2

χS(s, σ)T (s− σ)Bu(σ)d(σ, s)

=
∫ t

0

∫ t

0
χS(s, σ)T (s− σ) Bu(σ)dsdσ

=
∫ t

0

∫ t

σ

T (s− σ)Bu(σ)dsdσ

=
∫ t

0

∫ t−σ

0
T (s)Bu(σ)dsdσ

Now for all σ ∈ [0, t] :
∫ t−σ

0 T (s)Bu(σ)ds ∈ dom(A) and

A

( ∫ t−σ

0
T (s)Bu(σ)ds

)
= T (t− σ)Bu(σ)−Bu(σ)

by the same well known result. Since
∫ t

0 T (t − σ)Bu(σ) − Bu(σ)dσ exists and A is closed (and the well
known property of the Bochner integral) the above implies, that

∫ t

0
∫ s

0 T (s− σ)Bu(σ)dσds ∈ dom(A) and

A

( ∫ t

0

∫ s

0
T (s− σ) (f σ)dσds

)
=

∫ t

0
T (t− σ)Bu(σ)−Bu(σ)dσ.

Putting everything together:
∫ t

0 x sds ∈ dom(A) (since it is a vector space) and

A

( ∫ t

0
x(s)ds

)
= T (t)x0 − x0 +

∫ t

0
T (t− σ)Bu(σ)dσ −

∫ t

0
Bu(σ)dσ.

Therefore x is a mild solution. Let y be another mild solution with input u and initial value x0. Let z := y−x.
Then z ∈ C([0,∞), X) and for all t ∈ [0,∞):

∫ t

0 z(s)ds ∈ dom(A) and

z(t) = y(t)− x(t)

= A

( ∫ t

0
z(s)ds

)
.

Let t ∈ (0,∞) and define g : [0, t]→ X by

g(s) := T (t− s)
( ∫ s

0
z(σ)dσ

)
.

Then g is differentiable and for all s ∈ [0, t]:

g′ s = T (t− s)z(s)− T (t− s)A
( ∫ s

0
z(σ)dσ

)
︸ ︷︷ ︸

=z(s)

= 0.

Therefore g is constant and so

0 = g(0) = g(t) =
∫ t

0
z(σ)dσ.

Since t was arbitrary it follows that z = 0 by the continuity of z.
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2 The Unilateral Left Shift Semigroup
Definition 2.1 (Core). Let X be a Banach space and A : X ⊃ dom(A)→ X a closed operator. A subspace
Y ⊂ dom(A) is called a core of A if A|Y = A.

Proposition 2.2. Let T be a C0-semigroup with generator A on the Banach space X. Let Y ⊂ dom(A) a
subspace that is dense in X and T invariant. Then Y is a core of A.

Proof. See Proposition 1.7 of [EN99].

Proposition 2.3 (Almost Everywhere Pointwise Evaluation of Lp-valued Integrals). Let

1. X a Banach space,

2. p ∈ [1,∞),

3. (S,A , µ), (T,B, ν) σ-finite measure spaces,

4. F : S → Lp(T,X) Bochner integrable.

Then there exists a (µ× ν)-measurable function g : S × T → X with the following properties:

1. for µ-almost all s ∈ S : [T ∋ t 7→ g(s, t)] = F (s),

2. for ν-almost all t ∈ T : S ∋ s 7→ g(s, t) is Bochner integrable and( ∫
S

F (s)dµ(s)
)

(t) =
∫

S

g(s, t)dµ(s), (2.1)

3. g is unique in the sense that if h : S×T → X is measurable and satisfies 1., then h = g (µ×ν)-almost
everywhere.

Proof. See Proposition 1.2.25 in [Hyt+16].

Proposition 2.4 (Unilateral Left-Shift Semi-Group). Let X be a Banach space and p ∈ [1,∞). Define
the unilateral left-shift semi-group S by

S : [0,∞) −→ L(Lp([0,∞), X))
t 7−→ f 7→

(
s 7→ f(s+ t)

)
.

(2.2)

Then

1. S is a C0-semigroup,

2. the generator D of S is the closure of

D0 : Lp([0,∞), X)) ⊃ C∞
c ([0,∞), X) −→ Lp([0,∞), X))

f 7−→ f ′ (2.3)

3. the Resolvent R of D satisfies ∀λ ∈ C with Reλ > ω0(S):

for almost all s ∈ [0,∞) : (R(λ)f)(s) =
∫ ∞

s

exp(−λ(τ − s))f(τ)dτ. (2.4)

In particular this shows, that every element of dom(D) has a (unique) continuous representant.

Proof. To "1.": S is C0-semi-group: skipped.
To "2.": The space C∞

c ([0,∞), X) is a dense, S invariant subspace. If we can show that C∞
c ([0,∞), X) ⊂

dom(D) and that A is given by differentiation on this space, then we are finished by proposition 2.2. However
this is a simple consequence of the FTC and the compact support property: Let f ∈ C∞

c ([0,∞), X) and
b ∈ [0,∞) such that the support of f is contained in [0, b]. For all s ∈ [0,∞), h ∈ (0,∞):

S h f s− f s
h

− f ′(s) = f (s+ h)− f s
h

− f ′(s) = 1
h
·
∫ s+h

s

f ′(t)− f ′(s)dt
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Since f ′ is continuous and supported in the compact set [0, b] it is uniformly continuous. Let ε > 0. Therefore
(by definition) there exists δ ∈ (0,∞):

∀x, y ∈ [0,∞) : |x− y| < δ ⇒ ∥f ′(x)− f ′(y)∥ < ε

Then for all h ∈ (0, δ) (note that the support of S h f is contained in [0, b]):

∥S h f − f
h

− f ′∥L1 ≤ b sup
s∈[0,b]

∥S h f s− f s
h

− f ′(s)∥ ≤ sup
s∈[0,b]

1
h

∫ s+h

s

∥f ′(t)− f ′(s)∥︸ ︷︷ ︸
<ε

dt < b · ε.

To "3.": Let f ∈ Lp([0,∞), X) and λ ∈ C with Reλ > ω0(S). Define F : [0,∞)→ Lp([0,∞), X) by

F (t) := exp(−λ · t) · S(t) f

Then
R(λ)f =

∫ ∞

0
F (t)dt.

The function g : [0,∞)× [0,∞)→ X defined by

g(s, t) := exp(−λt)f(t+ s)

is product measurable and satisfies s 7→ g(s, t) = F (t) for almost all t ∈ [0,∞). Therefore using proposition
2.3 for almost all s ∈ [0,∞):

(R(λ) f)(s) =
( ∫ ∞

0
F (t)dt

)
(s)

=
∫ ∞

0
exp(−λt)f(s+ t)dt

=
∫ ∞

s

exp(−λ(t− s))f(t)dt

Definition 2.5 (Sobolev Spaces). In the situation of proposition 2.4: Define

W 1,p([0,∞), X) := (domD, ∥ · ∥1,p),

where
∥f∥1,p :=

(
∥f∥p

Lp + ∥Df∥p
Lp

)1/p
.

Then W 1,p([0,∞), X) is a Banach space, because the norm ∥ · ∥1,p is (equivalent to) the graph norm of D
and D is closed. Furthermore we define

W 1,p
loc ([0,∞), X) := {f ∈ Lp

loc([0,∞), X) : ∀t ∈ (0,∞)∃g ∈W 1,p([0,∞), X) with g|[0,t] = f |[0,t]}.

IfX is a Hilbert space we also defineH1([0,∞), X) := W 1,2([0,∞), X) andH1
loc([0,∞), X) := W 1,2

loc ([0,∞), X).
In this case H1 is a Hilbert space as well.

3 Existence of Classical Solutions
Throughout this section let:

1. X (state space) and U (input space) Banach spaces,

2. T a C0-semigroup on X with generator A,

3. B ∈ L(U,X),

4. p ∈ [1,∞),

5. δ0 : W 1,p([0,∞), U)→ U the point evaluation of the unique continuous representant at zero,
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6. S the unilateral left shift semigroup on Lp([0,∞), U) and D its generator,

7. Φ : [0,∞)→ L(Lp([0,∞), U), X) defined by

Φ(t)u :=
∫ t

0
T (t− s)Bu(s)ds. (3.1)

Theorem 3.1. Let X := X × Lp([0,∞), U). Define T : [0,∞)→ L(X ) by

T (t) :=
(
T (t) Φ(t)

0 S(t)

)
. (3.2)

Then:

1. T is a C0-semigroup,

2. the generator A of T is given by

A =
(
A Bδ0
0 D

)
(3.3)

with
dom(A) = dom(A)×W 1,p([0,∞), U), (3.4)

3. for all (x0, u) ∈ X and λ ∈ C in some right half plane:∫ ∞

0
exp(−λt)x(t, x0, u)dt = (λI −A)−1

(
x0 +

∫ ∞

0
exp(−λt)Bu(t)dt

)
. (3.5)

Proof. To “1.”: Clearly T (0) = I. To show the functional equation let t, s ∈ [0,∞). Then

T (s)T (t) =
(
T (s) Φ(s)

0 S(s)

) (
T (t) Φ(t)

0 S(t)

)
=

(
T (t+ s) T (s)Φ(t) + Φ(s)S(t)

0 S(t+ s)

)
.

Therefore it is left to show that
Φ(t+ s) = T (s)Φ(t) + Φ(s)S(t).

To this end let u ∈ Lp([0,∞), U). Then

T (s)Φ(t)u+ Φ(s)S(t)u = T (s)
∫ t

0
T (t− σ)Bu(σ)dσ +

∫ s

0
T (s− σ)B(S(t)u)(σ)dσ

=
∫ t

0
T (t+ s− σ)Bu(σ)dσ +

∫ s

0
T (s− σ)Bu(t+ σ)dσ

=
∫ t

0
T (t+ s− σ)Bu(σ)dσ +

∫ t+s

t

T (t+ s− σ)Bu(σ)dσ

= Φ(t+ s)f.

The strong continuity follows from the fact that S, T,Φ are strongly continuous.
To “2.”: Let RA, RA, RD be the Resolvent of A, A,D. Let λ ∈ C with Reλ larger than ω0(T ), ω0(S) and
ω0(T ). Let u ∈ Lp([0,∞), U). Then

RA(λ)
(
x0
u

)
=

∫ ∞

0
exp(−λt)T (t)

(
x0
u

)
dt =

(
RA(λ)x0 +

∫ ∞
0 exp(−λt)Φ(t)udt
RD(λ)u

)
.

Now let
M := {(t, s) ∈ [0,∞)2 : s ≤ t}.
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∫ ∞

0
exp(−λt)Φ(t)udt =

∫ ∞

0
exp(−λt)

∫ t

0
T (t− s)Bu(s)dsdt

=
∫

[0,∞)2
χM (s, t) exp(−λt)T (t− s)Bu(s)d(s, t)

=
∫ ∞

0

∫ ∞

s

exp(−λt)T (t− s)Bu(s)dtds

=
∫ ∞

0

∫ ∞

0
exp(−λt)T (t) exp(−λs)Bu(s)dtds

=
∫ ∞

0
exp(−λt)T (t)

∫ ∞

0
exp(−λs)Bu(s)dsdt

= RA(λ)
∫ ∞

0
exp(−λs)Bu(s)ds.

On the other hand (
λI −

(
A Bδ0
0 D

))−1
=

(
RA(λ) RA(λ)Bδ0RD(λ)

0 RD(λ)

)
,

because(
λI −A −Bδ0

0 λI −D

) (
RA(λ) RA(λ)Bδ0RD(λ)

0 RD(λ)

)
=

(
I (λI −A)RA(λ)Bδ0RD(λ)−Bδ0RD(λ)
0 (λI −D)RD(λ)

)
= I.

Other equation analogue. Now let u ∈ Lp([0,∞), U). Then

RA(λ)Bδ0RD(λ)u = RA(λ)B
∫ ∞

0
exp(−λτ)u(τ)dτ = RA(λ)

∫ ∞

0
exp(λτ)Bu(τ)dτ,

because for almost all s ∈ [0,∞) : (RD(λ)u)(s) =
∫ ∞

s
exp(−λ(τ − s))f(τ)dτ . This shows that∫ ∞

0
exp(−λt)Φ(t)udt = RA(λ)Bδ0RD(λ)u

and so in total
(λ · I −A)−1 =

(
λI −

(
A Bδ0
0 D

))−1
.

Corollary 3.2. Let x0 ∈ dom(A) and u ∈W 1,p([0,∞), U). Then there exists a classical solution to the iIVP
associated to (A,B) with initial value x0 and input u.
Proof. By assumption (x0, u) ∈ dom(A). Therefore x : [0,∞)→ X defined by

x(t) :=
(
x1(t)
x2(t)

)
:= T (t)

(
x0
u

)
is in C1([0,∞),X ) and satisfies x(0) = (x0, u). Furthermore for all t ∈ [0,∞):(

ẋ1(t)
ẋ2(t)

)
= ẋ(t) = Ax(t) =

(
A Bδ0
0 D

) (
x1(t)
x2(t)

)
=

(
Ax1(t) +Bx2(0)

Dx2(t)

)
.

Now Bx2(0) = B(S(t)u)(0) = Bu(t). This implies, that x1 is the classical solution to the iIVP associated
to (A,B) with initial value x0 and input u.

Corollary 3.3. Let x0 ∈ dom(A) and u ∈W 1,p
loc ([0,∞), U). Then there exists a classical solution to the iIVP

associated to (A,B) with initial value x0 and input u.
Proof. Let τ ∈ (0,∞) and g ∈W 1,p([0,∞), U) with g|[0,τ ] = u|[0,τ ]. Then for all t ∈ [0, τ ]

x(t, x0, u) = x(t, x0, g).

And x(·, x0, g) is a classical solution by the preceding.

Throughout let:
1. (X, ∥ · ∥) a Banach space,
2. T a C0-semigroup on X with generator A,
3. β ∈ ρ(A).
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4 Interpolation-, Extrapolation-Spaces and Semigroups
4.1 The Interpolated Semigroup
Definition 4.1 (Interpolated Space). Define the interpolated space (X1, ∥ · ∥1) by

X1 := dom(A)

and
∥x∥1 := ∥(βI −A)x∥.

Proposition 4.2. The following are true:

1. (βI −A) is a surjective isometry X1 → X

2. ∥ · ∥1 is equivalent to the graph norm of A (and so X1 is a Banach space and ∥ · ∥1 is stronger than
∥ · ∥)

Proposition 4.3 (Interpolated Semigroup). Define the interpolated semigroup2 T1 : [0,∞)→ L(X1) by

T1(t) := (βI −A)−1T (t)(βI −A).

Then

1. T1 is a C0-semigroup,

2. The generator A1 of T1 is given by the restriction of A to dom(A2),

3. T1 is the restriction of T .

4.2 The Extrapolated Semigroup
Definition 4.4 (Extrapolated Space). Define the extrapolated space (X−1, ∥ · ∥−1) as the completion of
X with respect to the norm ∥ · ∥ ◦ (β · I −A)−1.
Proposition 4.5. The following is true:

1. βI −A (resp. A) is an isometry with dense range (resp. continuous) as an operator (domA, ∥ · ∥0)→
X−1,

2. βI−A−1 is the unique extension of βI−A to a surjective isometry X → X−1, where A−1 ∈ L(X,X−1)
is the unique continuous extension of A.

Proposition 4.6 (Extrapolated Semigroup). Define the extrapolated semigroup3 T−1 : [0,∞)→ L(X−1)
by

T−1(t) := (βI −A−1)T (t)(βI −A−1)−1.

Then

1. T−1 is a C0-semigroup,

2. The generator of T−1 is A−1,

3. T−1 extends T .

Proof. The first two points are obvious since T−1 is similar to T and since (βI −A−1)(dom(A)) = X. And
for x0 ∈ X:

(βI −A−1)A(βI −A−1)−1x = (βI −A−1)A(βI −A)−1x

= (βI −A−1)(β(βI −A)−1x− x)
= βI − βI +A−1x.

since
I = β(βI −A)−1 −A(βI −A)−1.

The third point follows from the fact, that T commutes with its generator and that ∥ · ∥ is stronger than
∥ · ∥−1.

2in [TW09] T1 is denoted by the same symbol as the original semigroup
3in [TW09] T−1 is denoted by the same symbol as the original semigroup
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Diagram 4.7 (Inter-/Extra-Polation Summary). The relationship between the inter-/extra-polation spaces
and semigroups are visualised in the following commutative diagram, where both squares commute for any
t ∈ [0,∞) and all the vertical arrows are surjective isometries:

X−1 X−1

X X

X1 X1

← →T−1(t)

←

→ (βI−A−1)−1←

→

βI−A−1

← →T (t)

←

→ (βI−A)−1←

→

βI−A

← →T1(t)

4.3 The Hilbert Space Case
Assume (only for this subsection) that X is a Hilbert space. Let:

1. JX : X → X ′ the surjective and anti-linear Riesz isometry,

2. T ∗ the adjoint semigroup of T (whose generator is A∗),

3. Xd
1 the interpolation space associated to T ∗ and β̄ (possible since β̄ ∈ ρ(A∗)),

4. id : Xd
1 → X the natural injection.

Proposition 4.8 (Summary of First Seminar). The following is true:

1. id is continuous and has dense range,

2. (id)′ ◦ JX : X → (Xd
1 )′ has dense range,

3. for all x ∈ X: ∥x∥−1 = ∥i′d(JX(x))∥,

4. (id)′ ◦ JX extends to a unique anti-linear and surjective isometry J : X−1 → (Xd
1 )′,

5. For all t ∈ [0,∞):
T−1 = J−1 ◦ ((T ∗)1(t))′ ◦ J.

Proof. This was shown in the first seminar.

Diagram 4.9 (Inter-/Extra-Polation Summary, Hilbert Case). The relationship between the inter-/extra-
polation spaces and semigroups in the Hilbert space case are visualised in the following commutative diagram,
where all three squares commute for any t ∈ [0,∞) and all the vertical arrows are surjective isometries:

(Xd
1 )′ (Xd

1 )′

X−1 X−1

X X

X1 X1

← →((T ∗)1(t))′

←

→ J−1

← →T−1(t)

←

→

J

←

→ (βI−A−1)−1←

→

βI−A−1

← →T (t)

←

→ (βI−A)−1←

→

βI−A

← →T1(t)
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5 Admissible Control Operators
This section is based on section 4.2 of [TW09]. In this section let:

1. U a Banach space called the input space,

2. p ∈ [1,∞),

3. B ∈ L(U,X−1) called the control operator,

4. Sl (resp. Sr) the unilateral left (resp. right) shift semigroup on Lp([0,∞), U).

Definition 5.1 (Truncation Operator). Define the truncation operator

P : [0,∞)→ L
(
Lp

loc([0,∞), U), Lp([0,∞), U)
)

by

(P (t)u)(s) :=
{
u(s), if s ≤ t,
0, else.

Definition 5.2 (Controllability Map). Define the controllability map Φ : [0,∞)→ L(Lp([0,∞), U), X−1)
by

Φ(t) :=
∫ t

0
T−1(t− s)Bu(s)ds.

Proposition 5.3 (Causality Property). For all s, t ∈ [0,∞) with s ≥ t and u ∈ Lp
loc([0,∞), U):∫ t

0
T−1(t− σ)Bu(σ)dσ = Φ(t)P (s)u.

Proposition 5.4 (Composition Property). For all t, s ∈ [0,∞) and u ∈ Lp([0,∞), U):

Φ(t+ s)u = T−1(t)Φ(s)u+ Φ(t)Sl(s)u.

Proof. Has been proven last seminar.

Definition 5.5 (Admissible Control Operator). B is called an admissible control operator (for T ) if there
exists τ > 0 with ran(Φ(τ)) ⊂ X.

Proposition 5.6. If B is admissible, then for all t ∈ [0,∞):

Φ(t) ∈ L(Lp([0,∞), U), X).

Proof. (βI −A−1)−1 ∈ L(X−1, X). Let u ∈ Lp([0,∞), U). Then

Φ(τ)u = (βI −A)(βI −A)−1Φ(τ)u
= (βI −A)(βI −A−1)−1Φ(τ)u

= (βI −A)
∫ τ

0
(βI −A−1)−1T−1(τ − s)Bu(s)ds

= (βI −A)
∫ τ

0
T−1(τ − s) (βI −A−1)−1B︸ ︷︷ ︸

∈L(U,X)

u(s)ds

= (βI −A)
∫ τ

0
T (τ − s)(βI −A−1)−1Bu(s)ds.

Where the final integration is carried out in X, which is possible since ∥ · ∥ is stronger than ∥ · ∥−1. Therefore
Φ(τ) is the composition of a closed and a bounded operator and hence closed itself (as an operator with
values in X). The closed graph theorem implies, that Φ(τ) is bounded. Let σ ∈ [0,∞) and assume that
Φ(σ) ∈ L(Lp([0,∞), U), X). Then so is Φ(2σ), because (using the composition property)

Φ(2σ) = T−1(σ)Φ(σ) + Φ(σ)Sl(σ) = T (σ)Φ(σ) + Φ(σ)Sl(σ).
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From the above it follows by induction, that Φ(2kτ) is continuous for all k ∈ N.
Let σ ∈ [0,∞) and assume that Φ(σ) ∈ L(Lp([0,∞), U), X). If t ∈ [0, σ] and u ∈ Lp([0,∞)U), then

Φ(t)u =
∫ t

0
T−1(t− s)Bu(s)ds

=
∫ σ

σ−t

T−1(σ − s)Bu(t− σ + s)ds

= Φ(σ)Sr(σ − t)u.

Which implies that Φ(t) ∈ L(Lp([0,∞), U), X).

Proposition 5.7. Let t, s ∈ [0,∞) with t ≥ s. Then ∥Φ(s)∥ ≤ ∥Φ(t)∥.

Proof. Let u ∈ Lp([0,∞), U). Then

Φ(t)Sr(t− s)u = Φ(s+ (t− s))Sr(t− s)u
= T (s)Φ(t− s)Sr(t− s)u+ Φ(s)Sl(t− s)Sr(t− s)u
= T (s)Φ(t− s)P (t− s)Sr(t− s)︸ ︷︷ ︸

0

u+ Φ(s)Sl(t− s)Sr(t− s)︸ ︷︷ ︸
=I

u

= Φ(s)u.

and so (using ∥Sr(t− s)∥ ≤ 1)
∥Φ(s)u∥ ≤ ∥Φ(t)∥∥u∥.

Which in turn implies that ∥Φ(s)∥ ≤ ∥Φ(t)∥.

Proposition 5.8. Assume that B is admissible. Then Φ is strongly continuous as a function taking values in
L(Lp([0,∞), U), X).

Proof. Let u ∈ Lp([0,∞), U). For all t ∈ [0, 1]:

∥Φ(t)u∥ = ∥Φ(t)P (t)u∥
≤ ∥Φ(1)∥ ∥P (t)u∥︸ ︷︷ ︸

→0, t→0

.

Let t, s ∈ [0,∞). Then

∥Φ(t+ s)u− Φ(t)u∥ = ∥T (s)Φ(t)u+ Φ(s)Sl(t)u− Φ(t)u∥ ≤ ∥T (s)(Φ(t)u− Φ(t)u)∥︸ ︷︷ ︸
→0,s→0

+ ∥Φ(s)Sl(t)u∥︸ ︷︷ ︸
→0,s→0

.

This implies the strong continuity from above of Φ at t. Let t, s ∈ [0,∞) with s ≤ t. Then

Φ(t) = Φ(t− s+ s) = T (t− s)Φ(s)u+ Φ(t− s)Sl(s)

and so

∥Φ(t)u− Φ(t− s)u∥ = ∥T (t− s)Φ(s)u+ Φ(t− s)(Sl(s)u− u)∥
≤ sup

σ∈[0,t]
∥T (σ)∥ ∥Φ(s)u∥︸ ︷︷ ︸

→0,s→0

+∥Φ(t)∥ ∥Sl(s)u− u∥︸ ︷︷ ︸
→0,s→0

.

Which proves the strong continuity of Φ from below at t (using strong continuity of Sl).

Proposition 5.9 (Existence of X Valued Solutions). Assume that B is admissible. Then for every x0 ∈ X
and u ∈ Lp

loc([0,∞), U) there exists a unique strong solution in X−1 to the iIVP associated to (A−1, B) with
initial value x0 and input u. Furthermore this solution is in C([0,∞), X).

Proof. Let x be the mild solution (in X−1). From last time and the causality property we know for all
s ∈ [0,∞) and ∀t ∈ [0, s]:

x(t) = T−1(t)x0︸ ︷︷ ︸
=T (t)x0

+Φ(t)P (s)u
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and so x ∈ C([0,∞), X). In particular this shows that x ∈ L1
loc([0,∞), Y ), where Y := (dom(A−1), ∥ · ∥gr).

Since x is the mild solution: x ∈ C([0,∞), X−1) and for all t ∈ [0,∞) :
∫ t

0 x(s)ds ∈ dom(A−1) and

x(t)− x0 = A−1

∫ t

0
x(s)ds+

∫ t

0
Bu(s)ds.

Which implies that for all t ∈ [0,∞):

x(t)− x0 =
∫ t

0
A−1x(s)ds+

∫ t

0
Bu(s)ds

=
∫ t

0
A−1x(s) +Bu(s)ds,

because A−1 ∈ L(X,X−1), x ∈ C([0,∞), X) and ∥ · ∥ is stronger than ∥ · ∥−1.

Definition 5.10 (Step Function). Let τ > 0. A function u ∈ Lp([0,∞), U) is called a step function on
[0, τ ] if there exists a partition 0 = t0 < · · · < tn = τ of [0, τ ] and u1, . . . , un ∈ U with

u =
n∑

i=1
χ[ti−1,ti]ui.

Lemma 5.11 (Step Function Lemma). Let τ > 0 and u :=
∑n

i=1 χ[ti−1,ti]ui ∈ Lp([0,∞), U) a step
function on [0, τ ]. Then Φ(τ)u ∈ X.

Proof.

Φ(τ)u =
∫ τ

0
T−1(τ − s)Bu(s)ds

=
n∑

i=1

∫ ti

ti−1

T−1(τ − s)Buids

=
n∑

i=1

∫ ti−ti−1

0
T−1(τ − ti−1 − s)Buids

=
n∑

i=1
T−1(τ − ti)

∫ ti−ti−1

0
T−1(ti − ti−1 − s)Buids

=
n∑

i=1
T−1(τ − ti)

∫ ti−ti−1

0
T−1(s)Buids︸ ︷︷ ︸

∈dom(A−1)=X

Using the substitution φ(s) := b− s with b := ti − ti−1.

Proposition 5.12 (Step Function Admissability Criterion). Let τ ∈ (0,∞) and M ≥ 0 such that for
every step function u on [0, τ ]:

∥Φ(τ)u∥X ≤M∥u∥Lp .

Then B is admissible.

Proof. Follows at once from the density of step functions in Lp([0, τ ], U), the causality and the fact that
∥ · ∥X is stronger than ∥ · ∥X−1 .

Example 5.13 (Unilateral Right Shift Semigroup with Boundary Control). Let X := L2([0,∞),C),
p = 2, U := C and T the unilateral right shift semigroup. The adjoint semigroup T ∗ is the unilateral left shift
semigroup. Let JX : X → X ′ be the Riesz isomorphism. Let id : Xd

1 → X be the natural injection. Then
(id)′ ◦ JX extends to an anti-linear surjective isometry J : X−1 → (Xd

1 )′. We have Xd
1 = H1([0,∞),C)

(equality of sets, equivalence of norms). Let δ0 ∈ (H1([0,∞)))′ be the point evaluation at 0. Define the
control operator B ∈ L(U,X−1) by Bu0 := u0 · J−1δ0. Then B is admissible and for all u ∈ L2([0,∞), U)
and t, s ∈ [0,∞):

(Φ(t)u)(s) =
{
u(t− s) s ∈ [0, t],
0 else.
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Proof. Let t ∈ [0,∞), u ∈ L2 and f ∈ H1([0,∞)). Then

(JΦ(t)u)f =
∫ t

0
JT−1(t− s)Bu(s)dsf

=
∫ t

0
JT−1(t− s)u(s)J−1δ0dsf

=
∫ t

0
ū(s)(T ∗(t− s))′δ0dsf

=
∫ t

0
ū(s)δ0T

∗(t− s)fds

=
∫ t

0
ū(s)f(t− s)ds

=
∫ t

0
ū(t− s)f(s)ds

= ((id)′JX(ũ))f,

where ũ ∈ X is defined by

ũ(s) :=
{
u(t− s) s ∈ [0, t],
0 else.

Therefore Φ(t)u = ũ, which was to be proven. The substitution with φ : [0, t] → [0, t], φ(s) := t − s was
used. Then φ′ = −1 and φ(0) = t, φ(t) = 0.

6 Admissible Observation Operators
This section is based on section 4.3 of [TW09]. In this section let:

1. Y a Banach space called the output space,

2. p ∈ [1,∞),

3. C ∈ L(X1, Y ) called the observation operator,

4. P the truncation operator on Lp([0,∞), Y ).

Definition 6.1 (Reflection Operator). Define the reflection operator R : [0,∞)→ L(Lp([0,∞), Y )) by

(R(τ)f)(t) :=
{
f(τ − t) t ∈ [0, τ ],
0 else.

Definition 6.2 (Output Map). Define the extended output map ψ1 ∈ L(X1, L
p
loc([0,∞), Y )) by

(ψ1x0)(t) := CT1(t)x0

and the output map Ψ1 : [0,∞)→ L(X1, L
p([0,∞), Y )) by

Ψ1(τ)x0 := P (τ)ψ1x0.

Proposition 6.3 (Reflection Property). For all x0 ∈ X1 and τ, σ ∈ [0,∞) with σ ≤ τ :

∥R(τ)Ψ1(σ)x0∥ = ∥Ψ1(σ)x0∥.

Proposition 6.4 (Dual Composition Property). Let τ, σ ∈ [0,∞) and x0 ∈ X1. Then

ψ1x0 = Ψ1(τ)x0 + Sr(τ)ψ1T1(τ)x0

and
Ψ1(τ + σ)x0 = Ψ1(τ)x0 + Sr(τ)Ψ1(σ)T1(τ)x0.
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Proof. Let t ∈ [0,∞). Then

(Sr(τ)ψ1T1(τ)x0)(t) = (Sr(τ)Sl(τ)ψ1x0)(t) =
{

0 t ≤ τ,
(ψ1x0)(t) else.

Ψ1(τ + σ)x0 = P (τ + σ)ψ1x0

= Ψ1(τ)x0 + P (τ + σ)Sr(τ)ψ1T1(τ)x0

= Ψ1(τ)x0 + Sr(τ)P (σ)ψ1︸ ︷︷ ︸
Ψ1(σ)

T1(τ)x0.

Definition 6.5 (Admissible Observation Operator). C is called an admissible observation operator (for
T ) if there exists τ ∈ [0,∞) such that Ψ1(τ) has a (necessarily unique) extension to an operator in
L(X,Lp([0,∞), Y )).

Proposition 6.6. If C is admissible, then for all t ∈ [0,∞) : Ψ1(t) has a (necessarily unique) extension to
an operator in L(X,Lp([0,∞), Y )).

Proof. Let t ∈ [0,∞) and assume that Ψ1(t) has an extension. Let s ∈ [0, t] then Ψ1(s) = P (s)Ψ1(t) and
so Ψ1(s) also has an extension. From the dual composition property:

Ψ1(2t) = Ψ1(t) + Sr(t)Ψ1(t)T1(t)

and so Ψ1(2t) also has an extension.

Definition 6.7. If C is admissible define Ψ : [0,∞)→ L(X,Lp([0,∞), Y )) by Ψ(t) := the unique continuous
extension of Ψ1(t).4

Example 6.8 (Unilateral Left Shift Semigroup with Boundary Observation). Let X := L2([0,∞),C), T
the unilateral left shift semigroup on X and Y := C. Then X1 = H1([0,∞),C) (equality of sets, equivalence
of norms). Let C := δ0 be the point evaluation at 0. Then C ∈ L(X1, Y ) but C /∈ L(X,Y ). However for all
t ∈ [0,∞):

(ψ1f)(t) = δ0T1(t)f = f(t).

Which implies, that for all τ ∈ [0,∞) : Ψ1(τ) = P (τ)|X1 , where P is the truncation operator on X. Therefore
C is admissible and Ψ = P .

7 Duality Between Observation and Control
This section is based on section 4.4 of [TW09]. Throughout this section assume that X is a Hilbert space
and assume the definitions of section 4.3 have been made (J , Xd

1 , etc.).

Definition 7.1. Let Z be a Hilbert space. Let f ∈ L(Z,X−1). Define f ♯ ∈ L(Xd
1 , Z)5 by letting it be the

unique map that satisfies ∀z ∈ Z, x0 ∈ Xd
1 :

J(fz)x0 = ⟨f ♯x0, z⟩Z .

Such a map exists, because Xd
1 × Z ∋ (x0, z) 7→ J(fz)x0 ∈ C is sesquilinear and continuous.

In addition let:

1. U a Hilbert space,

2. B ∈ L(U,X−1),

3. Φ the controllability map associated to T and the control operator B (with p = 2),

4. Ψ1 the output map associated to T ∗ and the observation operator B♯ (with p = 2).
4In [TW09] the output map, its extension and the extended output map are all called Ψ.
5In [TW09] f♯ is simply denoted f∗
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Proposition 7.2 (Duality of Observation and Control). Let x0 ∈ Xd
1 and τ ∈ (0,∞). Then for all

t ∈ [0,∞):

((Φ(τ))♯x0)(t) =
{
B♯T ∗(τ − t)x0 t ∈ [0, τ ],
0 else.

= (R(τ)Ψ1(τ)x0)(t)

In particular
∥(Φ(τ))♯x0∥ = ∥Ψ1(τ)x0∥.

If B is admissible for T and we view Φ(τ) ∈ L(L2([0,∞), U), X), then (Φ(τ))∗ extends (Φ(τ))♯.

Proof. Let u ∈ L2([0,∞), U) and x0 ∈ Xd
1 . Then (because T−1 = J−1 ◦ (T ∗|Xd

1
)′ ◦ J)

J(Φ(τ)u)x0 =
∫ τ

0
J(T−1(τ − σ)Bu(σ))x0dσ

=
∫ τ

0
J(Bu(σ))T ∗(τ − σ)x0dσ

=
∫ τ

0
⟨⟨B♯T ∗(τ − σ)x0, u(σ)⟩Udσ

= ⟨v, u⟩L2 ,

where v ∈ L2 is defined by

v(t) :=
{
B♯T ∗(τ − t)x0 t ∈ [0, τ ],
0 else.

If B is admissible, then Φ(τ)u ∈ X and so

J(Φ(τ)u)x0 = ⟨x0,Φ(τ)u⟩X = ⟨(Φ(τ))∗x0, u⟩L2 .

Theorem 7.3 (Duality of Admissability Concepts). B is an admissible control operator for T if and only
if B♯ is an admissible observation operator for T ∗.

Proof. Assume that B is admissible. Let τ ∈ [0,∞). Then Φ(τ) ∈ L(L2([0,∞), U), X) and so (Φ(τ))∗ ∈
L(X,L2([0,∞), U)). Now for all x0 ∈ Xd

1 :

∥Ψ1(τ)x0∥L2 = ∥(Φ(τ))∗x0∥L2 ≤ ∥(Φ(τ))∗∥∥x0∥X .

Which implies that Ψ1(τ) can be extended.
Assume that B♯ is an admissible observation operator. Let τ ∈ (0,∞). Then for all x0 ∈ Xd

1 :

∥Ψ1(τ)x0∥L2 ≤ ∥Ψ(τ)∥∥x0∥X .

Let u ∈ L2([0,∞), U) be a step function on [0, τ ]. Then for all x0 ∈ Xd
1 :

⟨x0,Φ(τ)u⟩X = J(Φ(τ)u)x0 = ⟨(Φ(τ))♯x0, u⟩L2 = ⟨R(τ)Ψ1(τ)x0, u⟩L2

and so
|⟨Φ(τ)u, x0⟩X | ≤ ∥R(τ)Ψ1(τ)x0∥∥u∥L2 ≤ ∥Ψ(τ)∥∥x0∥X∥u∥L2

which implies by density of Xd
1 in X that

∥Φ(τ)u∥X ≤ ∥Ψ(τ)∥∥u∥L2 .

The step function admissability criterion concludes that B is admissible.
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