Control and Observation Operators

Jannik Daun

August 29, 2025

Contents

1	The Inhomogeneous Initial Value Problem (iIVP)	1
2	The Unilateral Left Shift Semigroup	4
3	Existence of Classical Solutions	5
4	Interpolation-, Extrapolation-Spaces and Semigroups 4.1 The Interpolated Semigroup	8
5	Admissible Control Operators	10
6	Admissible Observation Operators	13
	Duality Between Observation and Control The talk is based on the results from section 4.1 titled "Solutions of non-homogeneous differential equality" of [TW09].	14 qua-

1 The Inhomogeneous Initial Value Problem (iIVP)

Throughout this section let:

- 1. X (state space) and U (input space) Banach spaces,
- 2. T a C_0 -semigroup on X with generator A,
- 3. $B \in L(U, X)$.

Definition 1.1 (Types of Solutions). A function $x:[0,\infty)\to X$ is called a

- Classical Solution of the iIVP associated to (A,B) with initial value $x_0 \in \text{dom}(A)$ and input $u \in C([0,\infty),U)$ if:
 - 1. $x \in C^1([0,\infty), X)$,
 - 2. $x(0) = x_0$,
 - 3. $\forall t \in [0, \infty) : x(t) \in \text{dom}(A)$ and

$$\dot{x}(t) = Ax(t) + Bu(t).$$

- Strong Solution¹ of the iIVP associated to (A,B) with initial value $x_0 \in X$ and input $u \in L^1_{loc}([0,\infty),U)$ if
 - 1. $x \in C([0, \infty), X)$,
 - 2. $x \in L^1_{loc}([0,\infty), Y)$, where $Y := (dom(A), \|\cdot\|_{gr(A)})$,

 $^{^{1}}$ In [TW09] strong solutions are simply called solutions (in X).

3. $\forall t \in [0, \infty)$:

$$x(t) = x_0 + \int_0^t Ax(s) + Bu(s)ds.$$

- **Mild Solution** of the iIVP associated to (A,B) with initial value $x_0 \in X$ and input $u \in L^1_{loc}([0,\infty),U)$ if:
 - 1. $x \in C([0, \infty), X)$,
 - 2. $\forall t \in [0, \infty) : \int_0^t x(s)ds \in \text{dom}(A)$ and

$$x \ t = x_0 + A \int_0^t x(s)ds + \int_0^t Bu(s)ds.$$

Proposition 1.2.

classical solution \Rightarrow strong solution \Rightarrow mild solution.

Lemma 1.3. Define $\Phi:[0,\infty)\to L(L^1_{\mathrm{loc}}([0,\infty),U),X)$ by

$$\Phi(t)u := \int_0^t T(t-s)Bu(s)ds. \tag{1.1}$$

Then Φ is well-defined and strongly continuous.

Proof. To show well-definedness: Let $u \in L^1_{loc}([0,\infty))$ and $\in [0,\infty)$. Then

$$\| \int_0^t T(t-s)Bu(s)ds \| \le \sup_{s \in [0,t]} \|T(s)\| \cdot \int_0^t \|u(s)\|ds.$$

To show strong continuity: Let $t \in [0, \infty)$ and $\delta > 0$. Then

$$\begin{split} \Phi(t+\delta)u - \Phi(t)u &= \int_0^{t+\delta} T(t+\delta-s)Bu(s)ds - \int_0^t T(t-s)Bu(s)ds \\ &= \int_0^t (T(t+\delta-s) - T(t-s))Bu(s)ds + \int_t^{t+\delta} T(t+\delta-s)Bu(s)ds \\ &= (T(\delta) - I)\Phi(t)u + \int_t^{t+\delta} T(t+\delta-s)Bu(s)ds. \end{split}$$

The norm of the first summand can be made small since T is strongly continuous and the norm of the second summand by the dominated convergence theorem. On the other hand if $t - \delta \ge 0$, then

$$\Phi(t-\delta)u - \Phi(t)u = \int_0^{t-\delta} T(t-\delta-s)Bu(s)ds - \int_0^t T(t-s)Bu(s)ds$$
$$= \int_0^{t-\delta} (T(t-\delta-s) - T(t-s))Bu(s)ds - \int_{t-\delta}^t T(t-s)Bu(s)ds$$

and both summands can be seen to converge to 0 as $\delta \to 0$ by Lebesgues theorem of dominated convergence.

Theorem 1.4 (Existence and Uniqueness of Mild Solutions: the Principle of Duhamel). Define $x:[0,\infty)\times X\times L^1_{\mathrm{loc}}([0,\infty),U)\to X$ by

$$x(t, x_0, u) := T(t)x_0 + \underbrace{\int_0^t T(t - s)Bu(s)ds}_{=\Phi(t)u}.$$
(1.2)

Let $x_0 \in X$ and $u \in L^1_{loc}([0,\infty),U)$. Then $x(\cdot,x_0,u)$ is the unique mild solution to the iIVP associated to (A,B) with input u and initial value x_0 .

Proof. Let $x:=x(\cdot,x_0,u)$. The continuity of x follows from the fact that Φ and T are strongly continuous. Let $t\in [0,\infty)$: Then

$$\int_0^t x(s)ds = \int_0^t T(s)x_0ds + \int_0^t \int_0^s T(s-\sigma)Bu(\sigma)d\sigma ds.$$

The first summand is in the domain of A and $A(\int_0^t T(s)x_0ds)=T(t)x_0-x_0$ by a well known result. For the second summand: Let

$$S := \{ (s, \sigma) \in [0, t]^2 : 0 \le s \le t, 0 \le \sigma \le s \}.$$

Then, using Fubinis-Theorem and the substitution $\tau \mapsto \tau - c$

$$\begin{split} \int_0^t \int_0^s T(s-\sigma)Bu(\sigma)d\sigma ds &= \int_{[0,t]^2} \chi_S(s,\sigma)T(s-\sigma)Bu(\sigma)d(\sigma,s) \\ &= \int_0^t \int_0^t \chi_S(s,\sigma)T(s-\sigma) \ Bu(\sigma)ds d\sigma \\ &= \int_0^t \int_\sigma^t T(s-\sigma)Bu(\sigma)ds d\sigma \\ &= \int_0^t \int_0^{t-\sigma} T(s)Bu(\sigma)ds d\sigma \end{split}$$

Now for all $\sigma \in [0,t]: \int_0^{t-\sigma} T(s)Bu(\sigma)ds \in \mathrm{dom}(A)$ and

$$A\left(\int_0^{t-\sigma} T(s)Bu(\sigma)ds\right) = T(t-\sigma)Bu(\sigma) - Bu(\sigma)$$

by the same well known result. Since $\int_0^t T\ (t-\sigma)Bu(\sigma)-Bu(\sigma)d\sigma$ exists and A is closed (and the well known property of the Bochner integral) the above implies, that $\int_0^t \int_0^s T(s-\sigma)Bu(\sigma)d\sigma ds \in \mathrm{dom}(A)$ and

$$A\bigg(\int_0^t \int_0^s T(s-\sigma) \ (f \ \sigma) d\sigma ds\bigg) = \int_0^t T(t-\sigma) Bu(\sigma) - Bu(\sigma) d\sigma.$$

Putting everything together: $\int_0^t x \ sds \in dom(A)$ (since it is a vector space) and

$$A\left(\int_0^t x(s)ds\right) = T(t)x_0 - x_0 + \int_0^t T(t-\sigma)Bu(\sigma)d\sigma - \int_0^t Bu(\sigma)d\sigma.$$

Therefore x is a mild solution. Let y be another mild solution with input u and initial value x_0 . Let z:=y-x. Then $z\in C([0,\infty),X)$ and for all $t\in [0,\infty)$: $\int_0^t z(s)ds\in \mathrm{dom}(A)$ and

$$z(t) = y(t) - x(t)$$
$$= A\left(\int_0^t z(s)ds\right).$$

Let $t \in (0, \infty)$ and define $g : [0, t] \to X$ by

$$g(s) := T(t-s) \left(\int_0^s z(\sigma) d\sigma \right).$$

Then g is differentiable and for all $s \in [0, t]$:

$$g' s = T(t-s)z(s) - T(t-s)\underbrace{A\left(\int_0^s z(\sigma)d\sigma\right)}_{=z(s)} = 0.$$

Therefore g is constant and so

$$0 = g(0) = g(t) = \int_0^t z(\sigma)d\sigma.$$

Since t was arbitrary it follows that z = 0 by the continuity of z.

2 The Unilateral Left Shift Semigroup

Definition 2.1 (Core). Let X be a Banach space and $A: X \supset \text{dom}(A) \to X$ a closed operator. A subspace $Y \subset \text{dom}(A)$ is called a *core* of A if $\overline{A|_Y} = A$.

Proposition 2.2. Let T be a C_0 -semigroup with generator A on the Banach space X. Let $Y \subset dom(A)$ a subspace that is dense in X and T invariant. Then Y is a core of A.

Proof. See Proposition 1.7 of [EN99]. □

Proposition 2.3 (Almost Everywhere Pointwise Evaluation of L^p -valued Integrals). Let

- 1. X a Banach space,
- 2. $p \in [1, \infty)$,
- 3. $(S, \mathscr{A}, \mu), (T, \mathscr{B}, \nu)$ σ -finite measure spaces,
- 4. $F: S \to L^p(T,X)$ Bochner integrable.

Then there exists a $(\mu \times \nu)$ -measurable function $g: S \times T \to X$ with the following properties:

- 1. for μ -almost all $s \in S : [T \ni t \mapsto g(s,t)] = F(s)$,
- 2. for ν -almost all $t \in T$: $S \ni s \mapsto g(s,t)$ is Bochner integrable and

$$\left(\int_{S} F(s)d\mu(s)\right)(t) = \int_{S} g(s,t)d\mu(s),\tag{2.1}$$

3. g is unique in the sense that if $h: S \times T \to X$ is measurable and satisfies 1., then h = g $(\mu \times \nu)$ -almost everywhere.

Proof. See Proposition 1.2.25 in [Hyt+16].

Proposition 2.4 (Unilateral Left-Shift Semi-Group). Let X be a Banach space and $p \in [1, \infty)$. Define the unilateral left-shift semi-group S by

$$S: [0, \infty) \longrightarrow L(L^p([0, \infty), X))$$

$$t \longmapsto f \mapsto (s \mapsto f(s+t)).$$
 (2.2)

Then

- 1. S is a C_0 -semigroup,
- 2. the generator D of S is the closure of

$$D_0: L^p([0,\infty),X)) \supset C_c^\infty([0,\infty),X) \longrightarrow L^p([0,\infty),X))$$
$$f \longmapsto f' \tag{2.3}$$

3. the Resolvent R of D satisfies $\forall \lambda \in \mathbb{C}$ with $\operatorname{Re} \lambda > \omega_0(S)$:

for almost all
$$s \in [0, \infty)$$
: $(R(\lambda)f)(s) = \int_{0}^{\infty} \exp(-\lambda(\tau - s))f(\tau)d\tau$. (2.4)

In particular this shows, that every element of dom(D) has a (unique) continuous representant.

Proof. To "1.": S is C_0 -semi-group: skipped.

To "2.": The space $C_c^\infty([0,\infty),X)$ is a dense, S invariant subspace. If we can show that $C_c^\infty([0,\infty),X)\subset \mathrm{dom}(D)$ and that A is given by differentiation on this space, then we are finished by proposition 2.2. However this is a simple consequence of the FTC and the compact support property: Let $f\in C_c^\infty([0,\infty),X)$ and $b\in[0,\infty)$ such that the support of f is contained in [0,b]. For all $s\in[0,\infty)$, $h\in(0,\infty)$:

$$\frac{S \ h \ f \ s - f \ s}{h} - f'(s) = \frac{f \ (s + h) - f \ s}{h} - f'(s) = \frac{1}{h} \cdot \int_{s}^{s + h} f'(t) - f'(s) dt$$

Since f' is continuous and supported in the compact set [0,b] it is uniformly continuous. Let $\varepsilon > 0$. Therefore (by definition) there exists $\delta \in (0,\infty)$:

$$\forall x, y \in [0, \infty) : |x - y| < \delta \Rightarrow ||f'(x) - f'(y)|| < \varepsilon$$

Then for all $h \in (0, \delta)$ (note that the support of S h f is contained in [0, b]):

$$\|\frac{S \ h \ f - f}{h} - f'\|_{L^{1}} \le b \sup_{s \in [0,b]} \|\frac{S \ h \ f \ s - f \ s}{h} - f'(s)\| \le \sup_{s \in [0,b]} \frac{1}{h} \int_{s}^{s+h} \underbrace{\|f'(t) - f'(s)\|}_{\le \varepsilon} dt < b \cdot \varepsilon.$$

To "3.": Let $f \in L^p([0,\infty),X)$ and $\lambda \in \mathbb{C}$ with $\operatorname{Re} \lambda > \omega_0(S)$. Define $F:[0,\infty) \to L^p([0,\infty),X)$ by

$$F(t) := \exp(-\lambda \cdot t) \cdot S(t) f$$

Then

$$R(\lambda)f = \int_0^\infty F(t)dt.$$

The function $g:[0,\infty)\times[0,\infty)\to X$ defined by

$$g(s,t) := \exp(-\lambda t) f(t+s)$$

is product measurable and satisfies $s\mapsto g(s,t)=F(t)$ for almost all $t\in[0,\infty)$. Therefore using proposition 2.3 for almost all $s\in[0,\infty)$:

$$(R(\lambda) f)(s) = \left(\int_0^\infty F(t)dt \right)(s)$$
$$= \int_0^\infty \exp(-\lambda t) f(s+t)dt$$
$$= \int_s^\infty \exp(-\lambda (t-s)) f(t)dt$$

Definition 2.5 (Sobolev Spaces). In the situation of proposition 2.4: Define

$$W^{1,p}([0,\infty),X) := (\operatorname{dom} D, \|\cdot\|_{1,p}),$$

where

$$||f||_{1,p} := (||f||_{L^p}^p + ||Df||_{L^p}^p)^{1/p}.$$

Then $W^{1,p}([0,\infty),X)$ is a Banach space, because the norm $\|\cdot\|_{1,p}$ is (equivalent to) the graph norm of D and D is closed. Furthermore we define

$$W^{1,p}_{\mathrm{loc}}([0,\infty),X) := \{ f \in L^p_{\mathrm{loc}}([0,\infty),X) : \forall t \in (0,\infty) \exists g \in W^{1,p}([0,\infty),X) \text{ with } g|_{[0,t]} = f|_{[0,t]} \}.$$

If X is a Hilbert space we also define $H^1([0,\infty),X):=W^{1,2}([0,\infty),X)$ and $H^1_{\mathrm{loc}}([0,\infty),X):=W^{1,2}_{\mathrm{loc}}([0,\infty),X)$. In this case H^1 is a Hilbert space as well.

3 Existence of Classical Solutions

Throughout this section let:

- 1. X (state space) and U (input space) Banach spaces,
- 2. T a C_0 -semigroup on X with generator A,
- 3. $B \in L(U, X)$,
- 4. $p \in [1, \infty)$,
- 5. $\delta_0:W^{1,p}([0,\infty),U)\to U$ the point evaluation of the unique continuous representant at zero,

- 6. S the unilateral left shift semigroup on $L^p([0,\infty),U)$ and D its generator,
- 7. $\Phi:[0,\infty)\to L(L^p([0,\infty),U),X)$ defined by

$$\Phi(t)u := \int_0^t T(t-s)Bu(s)ds. \tag{3.1}$$

Theorem 3.1. Let $\mathcal{X} := X \times L^p([0,\infty),U)$. Define $\mathcal{T} : [0,\infty) \to L(\mathcal{X})$ by

$$\mathcal{T}(t) := \begin{pmatrix} T(t) & \Phi(t) \\ 0 & S(t) \end{pmatrix}. \tag{3.2}$$

Then:

- 1. \mathcal{T} is a C_0 -semigroup,
- 2. the generator A of T is given by

$$\mathcal{A} = \begin{pmatrix} A & B\delta_0 \\ 0 & D \end{pmatrix} \tag{3.3}$$

with

$$dom(\mathcal{A}) = dom(A) \times W^{1,p}([0,\infty), U), \tag{3.4}$$

3. for all $(x_0,u)\in\mathcal{X}$ and $\lambda\in\mathbb{C}$ in some right half plane:

$$\int_0^\infty \exp(-\lambda t)x(t,x_0,u)dt = (\lambda I - A)^{-1} \left(x_0 + \int_0^\infty \exp(-\lambda t)Bu(t)dt\right). \tag{3.5}$$

Proof. To "1.": Clearly $\mathcal{T}(0) = I$. To show the functional equation let $t, s \in [0, \infty)$. Then

$$\mathcal{T}(s)\mathcal{T}(t) = \begin{pmatrix} T(s) & \Phi(s) \\ 0 & S(s) \end{pmatrix} \begin{pmatrix} T(t) & \Phi(t) \\ 0 & S(t) \end{pmatrix} = \begin{pmatrix} T(t+s) & T(s)\Phi(t) + \Phi(s)S(t) \\ 0 & S(t+s) \end{pmatrix}.$$

Therefore it is left to show that

$$\Phi(t+s) = T(s)\Phi(t) + \Phi(s)S(t).$$

To this end let $u \in L^p([0,\infty),U)$. Then

$$T(s)\Phi(t)u + \Phi(s)S(t)u = T(s) \int_0^t T(t-\sigma)Bu(\sigma)d\sigma + \int_0^s T(s-\sigma)B(S(t)u)(\sigma)d\sigma$$

$$= \int_0^t T(t+s-\sigma)Bu(\sigma)d\sigma + \int_0^s T(s-\sigma)Bu(t+\sigma)d\sigma$$

$$= \int_0^t T(t+s-\sigma)Bu(\sigma)d\sigma + \int_t^{t+s} T(t+s-\sigma)Bu(\sigma)d\sigma$$

$$= \Phi(t+s)f.$$

The strong continuity follows from the fact that S,T,Φ are strongly continuous.

To "2.": Let R_A, R_A, R_D be the Resolvent of A, A, D. Let $\lambda \in \mathbb{C}$ with $\operatorname{Re} \lambda$ larger than $\omega_0(\mathcal{T}), \omega_0(S)$ and $\omega_0(\mathcal{T})$. Let $u \in L^p([0,\infty),U)$. Then

$$R_{\mathcal{A}}(\lambda) \begin{pmatrix} x_0 \\ u \end{pmatrix} = \int_0^\infty \exp(-\lambda t) \mathcal{T}(t) \begin{pmatrix} x_0 \\ u \end{pmatrix} dt = \begin{pmatrix} R_{\mathcal{A}}(\lambda) x_0 + \int_0^\infty \exp(-\lambda t) \Phi(t) u dt \\ R_{\mathcal{D}}(\lambda) u \end{pmatrix}.$$

Now let

$$M := \{(t,s) \in [0,\infty)^2 : s \le t\}.$$

$$\int_{0}^{\infty} \exp(-\lambda t) \Phi(t) u dt = \int_{0}^{\infty} \exp(-\lambda t) \int_{0}^{t} T(t-s) Bu(s) ds dt$$

$$= \int_{[0,\infty)^{2}} \chi_{M}(s,t) \exp(-\lambda t) T(t-s) Bu(s) d(s,t)$$

$$= \int_{0}^{\infty} \int_{s}^{\infty} \exp(-\lambda t) T(t-s) Bu(s) dt ds$$

$$= \int_{0}^{\infty} \int_{0}^{\infty} \exp(-\lambda t) T(t) \exp(-\lambda s) Bu(s) dt ds$$

$$= \int_{0}^{\infty} \exp(-\lambda t) T(t) \int_{0}^{\infty} \exp(-\lambda s) Bu(s) ds dt$$

$$= R_{A}(\lambda) \int_{0}^{\infty} \exp(-\lambda s) Bu(s) ds.$$

On the other hand

$$\left(\lambda I - \begin{pmatrix} A & B\delta_0 \\ 0 & D \end{pmatrix}\right)^{-1} = \begin{pmatrix} R_A(\lambda) & R_A(\lambda)B\delta_0R_D(\lambda) \\ 0 & R_D(\lambda) \end{pmatrix},$$

hecause

$$\begin{pmatrix} \lambda I - A & -B\delta_0 \\ 0 & \lambda I - D \end{pmatrix} \begin{pmatrix} R_A(\lambda) & R_A(\lambda)B\delta_0R_D(\lambda) \\ 0 & R_D(\lambda) \end{pmatrix} = \begin{pmatrix} I & (\lambda I - A)R_A(\lambda)B\delta_0R_D(\lambda) - B\delta_0R_D(\lambda) \\ 0 & (\lambda I - D)R_D(\lambda) \end{pmatrix} = I.$$

Other equation analogue. Now let $u \in L^p([0,\infty),U)$. Then

$$R_A(\lambda)B\delta_0R_D(\lambda)u = R_A(\lambda)B\int_0^\infty \exp(-\lambda\tau)u(\tau)d\tau = R_A(\lambda)\int_0^\infty \exp(\lambda\tau)Bu(\tau)d\tau,$$

because for almost all $s \in [0,\infty)$: $(R_D(\lambda)u)(s) = \int_s^\infty \exp(-\lambda(\tau-s))f(\tau)d\tau$. This shows that

$$\int_0^\infty \exp(-\lambda t)\Phi(t)udt = R_A(\lambda)B\delta_0 R_D(\lambda)u$$

and so in total

$$(\lambda \cdot I - \mathcal{A})^{-1} = \left(\lambda I - \begin{pmatrix} A & B\delta_0 \\ 0 & D \end{pmatrix}\right)^{-1}.$$

Corollary 3.2. Let $x_0 \in \text{dom}(A)$ and $u \in W^{1,p}([0,\infty),U)$. Then there exists a classical solution to the iIVP associated to (A,B) with initial value x_0 and input u.

Proof. By assumption $(x_0, u) \in \text{dom}(A)$. Therefore $x : [0, \infty) \to \mathcal{X}$ defined by

$$x(t) := \begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix} := \mathcal{T}(t) \begin{pmatrix} x_0 \\ u \end{pmatrix}$$

is in $C^1([0,\infty),\mathcal{X})$ and satisfies $x(0)=(x_0,u)$. Furthermore for all $t\in[0,\infty)$

$$\begin{pmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \end{pmatrix} = \dot{x}(t) = \mathcal{A}x(t) = \begin{pmatrix} A & B\delta_0 \\ 0 & D \end{pmatrix} \begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix} = \begin{pmatrix} Ax_1(t) + Bx_2(0) \\ Dx_2(t) \end{pmatrix}.$$

Now $Bx_2(0)=B(S(t)u)(0)=Bu(t)$. This implies, that x_1 is the classical solution to the iIVP associated to (A,B) with initial value x_0 and input u.

Corollary 3.3. Let $x_0 \in \text{dom}(A)$ and $u \in W^{1,p}_{\text{loc}}([0,\infty),U)$. Then there exists a classical solution to the iIVP associated to (A,B) with initial value x_0 and input u.

Proof. Let
$$\tau \in (0, \infty)$$
 and $g \in W^{1,p}([0, \infty), U)$ with $g|_{[0,\tau]} = u|_{[0,\tau]}$. Then for all $t \in [0,\tau]$ $x(t,x_0,u) = x(t,x_0,g)$.

And $x(\cdot, x_0, g)$ is a classical solution by the preceding.

Throughout let:

- 1. $(X, \|\cdot\|)$ a Banach space,
- 2. T a C_0 -semigroup on X with generator A,
- 3. $\beta \in \rho(A)$.

4 Interpolation-, Extrapolation-Spaces and Semigroups

4.1 The Interpolated Semigroup

Definition 4.1 (Interpolated Space). Define the *interpolated space* $(X_1, \|\cdot\|_1)$ by

$$X_1 := dom(A)$$

and

$$||x||_1 := ||(\beta I - A)x||.$$

Proposition 4.2. The following are true:

- 1. $(\beta I A)$ is a surjective isometry $X_1 \to X$
- 2. $\|\cdot\|_1$ is equivalent to the graph norm of A (and so X_1 is a Banach space and $\|\cdot\|_1$ is stronger than $\|\cdot\|_1$)

Proposition 4.3 (Interpolated Semigroup). Define the interpolated semigroup² $T_1:[0,\infty)\to L(X_1)$ by

$$T_1(t) := (\beta I - A)^{-1} T(t) (\beta I - A).$$

Then

- 1. T_1 is a C_0 -semigroup,
- 2. The generator A_1 of T_1 is given by the restriction of A to $dom(A^2)$,
- 3. T_1 is the restriction of T.

4.2 The Extrapolated Semigroup

Definition 4.4 (Extrapolated Space). Define the *extrapolated space* $(X_{-1}, \|\cdot\|_{-1})$ as the completion of X with respect to the norm $\|\cdot\| \circ (\beta \cdot I - A)^{-1}$.

Proposition 4.5. The following is true:

- 1. $\beta I A$ (resp. A) is an isometry with dense range (resp. continuous) as an operator $(\text{dom }A, \|\cdot\|_0) \to X_{-1}$.
- 2. $\beta I A_{-1}$ is the unique extension of $\beta I A$ to a surjective isometry $X \to X_{-1}$, where $A_{-1} \in L(X, X_{-1})$ is the unique continuous extension of A.

Proposition 4.6 (Extrapolated Semigroup). Define the extrapolated semigroup³ $T_{-1}:[0,\infty)\to L(X_{-1})$ by

$$T_{-1}(t) := (\beta I - A_{-1})T(t)(\beta I - A_{-1})^{-1}.$$

Then

- 1. T_{-1} is a C_0 -semigroup,
- 2. The generator of T_{-1} is A_{-1} ,
- 3. T_{-1} extends T.

Proof. The first two points are obvious since T_{-1} is similar to T and since $(\beta I - A_{-1})(\text{dom}(A)) = X$. And for $x_0 \in X$:

$$(\beta I - A_{-1})A(\beta I - A_{-1})^{-1}x = (\beta I - A_{-1})A(\beta I - A)^{-1}x$$
$$= (\beta I - A_{-1})(\beta(\beta I - A)^{-1}x - x)$$
$$= \beta I - \beta I + A_{-1}x.$$

since

$$I = \beta(\beta I - A)^{-1} - A(\beta I - A)^{-1}.$$

The third point follows from the fact, that T commutes with its generator and that $\|\cdot\|$ is stronger than $\|\cdot\|_{-1}$.

 $^{^2}$ in [TW09] T_1 is denoted by the same symbol as the original semigroup

 $^{^3}$ in [TW09] T_{-1} is denoted by the same symbol as the original semigroup

Diagram 4.7 (Inter-/Extra-Polation Summary). The relationship between the inter-/extra-polation spaces and semigroups are visualised in the following commutative diagram, where both squares commute for any $t \in [0, \infty)$ and all the vertical arrows are surjective isometries:

$$X_{-1} \xrightarrow{T_{-1}(t)} X_{-1}$$

$$\beta I - A_{-1} \uparrow \qquad \qquad \downarrow (\beta I - A_{-1})^{-1}$$

$$X \xrightarrow{T(t)} X$$

$$\beta I - A \uparrow \qquad \qquad \downarrow (\beta I - A)^{-1}$$

$$X_{1} \xrightarrow{T_{1}(t)} X_{1}$$

4.3 The Hilbert Space Case

Assume (only for this subsection) that X is a Hilbert space. Let:

- 1. $J_X: X \to X'$ the surjective and anti-linear Riesz isometry,
- 2. T^* the adjoint semigroup of T (whose generator is A^*),
- 3. X_1^d the interpolation space associated to T^* and $\bar{\beta}$ (possible since $\bar{\beta} \in \rho(A^*)$),
- 4. $i_d: X_1^d \to X$ the natural injection.

Proposition 4.8 (Summary of First Seminar). The following is true:

- 1. i_d is continuous and has dense range,
- 2. $(i_d)' \circ J_X : X \to (X_1^d)'$ has dense range,
- 3. for all $x \in X$: $||x||_{-1} = ||i'_d(J_X(x))||$,
- 4. $(i_d)' \circ J_X$ extends to a unique anti-linear and surjective isometry $J: X_{-1} \to (X_1^d)'$,
- 5. For all $t \in [0, \infty)$:

$$T_{-1} = J^{-1} \circ ((T^*)_1(t))' \circ J.$$

Proof. This was shown in the first seminar.

Diagram 4.9 (Inter-/Extra-Polation Summary, Hilbert Case). The relationship between the inter-/extra-polation spaces and semigroups in the Hilbert space case are visualised in the following commutative diagram, where all three squares commute for any $t \in [0, \infty)$ and all the vertical arrows are surjective isometries:

$$(X_{1}^{d})' \xrightarrow{((T^{*})_{1}(t))'} (X_{1}^{d})'$$

$$\downarrow^{J^{-1}} \qquad \downarrow^{J^{-1}}$$

$$X_{-1} \xrightarrow{T_{-1}(t)} X_{-1}$$

$$\downarrow^{(\beta I - A_{-1})^{-1}} \qquad \downarrow^{(\beta I - A_{-1})^{-1}}$$

$$X \xrightarrow{T(t)} X \qquad \downarrow^{(\beta I - A)^{-1}}$$

$$X_{1} \xrightarrow{T_{1}(t)} X_{1}$$

5 Admissible Control Operators

This section is based on section 4.2 of [TW09]. In this section let:

- 1. U a Banach space called the *input space*,
- 2. $p \in [1, \infty)$,
- 3. $B \in L(U, X_{-1})$ called the *control operator*,
- 4. S_l (resp. S_r) the unilateral left (resp. right) shift semigroup on $L^p([0,\infty),U)$.

Definition 5.1 (Truncation Operator). Define the truncation operator

$$P:[0,\infty)\to L\big(L^p_{\mathrm{loc}}([0,\infty),U),L^p([0,\infty),U)\big)$$

by

$$(P(t)u)(s) := \begin{cases} u(s), & \text{if } s \leq t, \\ 0, & \text{else.} \end{cases}$$

Definition 5.2 (Controllability Map). Define the *controllability map* $\Phi:[0,\infty)\to L(L^p([0,\infty),U),X_{-1})$ by

$$\Phi(t) := \int_0^t T_{-1}(t-s)Bu(s)ds.$$

Proposition 5.3 (Causality Property). For all $s,t\in[0,\infty)$ with $s\geq t$ and $u\in L^p_{\mathrm{loc}}([0,\infty),U)$:

$$\int_0^t T_{-1}(t-\sigma)Bu(\sigma)d\sigma = \Phi(t)P(s)u.$$

Proposition 5.4 (Composition Property). For all $t, s \in [0, \infty)$ and $u \in L^p([0, \infty), U)$:

$$\Phi(t+s)u = T_{-1}(t)\Phi(s)u + \Phi(t)S_l(s)u.$$

Proof. Has been proven last seminar.

Definition 5.5 (Admissible Control Operator). B is called an *admissible control operator* (for T) if there exists $\tau > 0$ with $\operatorname{ran}(\Phi(\tau)) \subset X$.

Proposition 5.6. If B is admissible, then for all $t \in [0, \infty)$:

$$\Phi(t) \in L(L^p([0,\infty), U), X).$$

Proof. $(\beta I - A_{-1})^{-1} \in L(X_{-1}, X)$. Let $u \in L^p([0, \infty), U)$. Then

$$\Phi(\tau)u = (\beta I - A)(\beta I - A)^{-1}\Phi(\tau)u
= (\beta I - A)(\beta I - A_{-1})^{-1}\Phi(\tau)u
= (\beta I - A)\int_0^{\tau} (\beta I - A_{-1})^{-1}T_{-1}(\tau - s)Bu(s)ds
= (\beta I - A)\int_0^{\tau} T_{-1}(\tau - s)\underbrace{(\beta I - A_{-1})^{-1}B}_{\in L(U,X)}u(s)ds
= (\beta I - A)\int_0^{\tau} T(\tau - s)(\beta I - A_{-1})^{-1}Bu(s)ds.$$

Where the final integration is carried out in X, which is possible since $\|\cdot\|$ is stronger than $\|\cdot\|_{-1}$. Therefore $\Phi(\tau)$ is the composition of a closed and a bounded operator and hence closed itself (as an operator with values in X). The closed graph theorem implies, that $\Phi(\tau)$ is bounded. Let $\sigma \in [0, \infty)$ and assume that $\Phi(\sigma) \in L(L^p([0, \infty), U), X)$. Then so is $\Phi(2\sigma)$, because (using the composition property)

$$\Phi(2\sigma) = T_{-1}(\sigma)\Phi(\sigma) + \Phi(\sigma)S_l(\sigma) = T(\sigma)\Phi(\sigma) + \Phi(\sigma)S_l(\sigma).$$

From the above it follows by induction, that $\Phi(2^k\tau)$ is continuous for all $k\in\mathbb{N}$. Let $\sigma\in[0,\infty)$ and assume that $\Phi(\sigma)\in L(L^p([0,\infty),U),X)$. If $t\in[0,\sigma]$ and $u\in L^p([0,\infty)U)$, then

$$\Phi(t)u = \int_0^t T_{-1}(t-s)Bu(s)ds$$

$$= \int_{\sigma-t}^{\sigma} T_{-1}(\sigma-s)Bu(t-\sigma+s)ds$$

$$= \Phi(\sigma)S_r(\sigma-t)u.$$

Which implies that $\Phi(t) \in L(L^p([0,\infty),U),X)$.

Proposition 5.7. Let $t, s \in [0, \infty)$ with $t \geq s$. Then $\|\Phi(s)\| \leq \|\Phi(t)\|$.

Proof. Let $u \in L^p([0,\infty),U)$. Then

$$\begin{split} \Phi(t)S_r(t-s)u &= \Phi(s+(t-s))S_r(t-s)u \\ &= T(s)\Phi(t-s)S_r(t-s)u + \Phi(s)S_l(t-s)S_r(t-s)u \\ &= T(s)\Phi(t-s)\underbrace{P(t-s)S_r(t-s)}_{0}u + \Phi(s)\underbrace{S_l(t-s)S_r(t-s)}_{=I}u \\ &= \Phi(s)u. \end{split}$$

and so (using $||S_r(t-s)|| \le 1$)

$$\|\Phi(s)u\| \le \|\Phi(t)\| \|u\|.$$

Which in turn implies that $\|\Phi(s)\| \leq \|\Phi(t)\|$.

Proposition 5.8. Assume that B is admissible. Then Φ is strongly continuous as a function taking values in $L(L^p([0,\infty),U),X)$.

Proof. Let $u \in L^p([0,\infty),U)$. For all $t \in [0,1]$:

$$\begin{split} \|\Phi(t)u\| &= \|\Phi(t)P(t)u\| \\ &\leq \|\Phi(1)\|\underbrace{\|P(t)u\|}_{\to 0,\ t\to 0}. \end{split}$$

Let $t, s \in [0, \infty)$. Then

$$\|\Phi(t+s)u - \Phi(t)u\| = \|T(s)\Phi(t)u + \Phi(s)S_l(t)u - \Phi(t)u\| \le \underbrace{\|T(s)(\Phi(t)u - \Phi(t)u)\|}_{\to 0, s \to 0} + \underbrace{\|\Phi(s)S_l(t)u\|}_{\to 0, s \to 0}.$$

This implies the strong continuity from above of Φ at t. Let $t,s\in [0,\infty)$ with $s\leq t$. Then

$$\Phi(t) = \Phi(t - s + s) = T(t - s)\Phi(s)u + \Phi(t - s)S_l(s)$$

and so

$$\begin{split} \|\Phi(t)u - \Phi(t-s)u\| &= \|T(t-s)\Phi(s)u + \Phi(t-s)(S_l(s)u - u)\| \\ &\leq \sup_{\sigma \in [0,t]} \|T(\sigma)\| \underbrace{\|\Phi(s)u\|}_{\to 0, s \to 0} + \|\Phi(t)\| \underbrace{\|S_l(s)u - u\|}_{\to 0, s \to 0}. \end{split}$$

Which proves the strong continuity of Φ from below at t (using strong continuity of S_l).

Proposition 5.9 (Existence of X **Valued Solutions).** Assume that B is admissible. Then for every $x_0 \in X$ and $u \in L^p_{\text{loc}}([0,\infty),U)$ there exists a unique strong solution in X_{-1} to the iIVP associated to (A_{-1},B) with initial value x_0 and input u. Furthermore this solution is in $C([0,\infty),X)$.

Proof. Let x be the mild solution (in X_{-1}). From last time and the causality property we know for all $s \in [0, \infty)$ and $\forall t \in [0, s]$:

$$x(t) = \underbrace{T_{-1}(t)x_0}_{=T(t)x_0} + \Phi(t)P(s)u$$

and so $x \in C([0,\infty),X)$. In particular this shows that $x \in L^1_{\mathrm{loc}}([0,\infty),Y)$, where $Y := (\mathrm{dom}(A_{-1}),\|\cdot\|_{\mathrm{gr}})$. Since x is the mild solution: $x \in C([0,\infty),X_{-1})$ and for all $t \in [0,\infty): \int_0^t x(s)ds \in \mathrm{dom}(A_{-1})$ and

$$x(t) - x_0 = A_{-1} \int_0^t x(s)ds + \int_0^t Bu(s)ds.$$

Which implies that for all $t \in [0, \infty)$:

$$x(t) - x_0 = \int_0^t A_{-1}x(s)ds + \int_0^t Bu(s)ds$$
$$= \int_0^t A_{-1}x(s) + Bu(s)ds,$$

because $A_{-1} \in L(X, X_{-1}), x \in C([0, \infty), X)$ and $\|\cdot\|$ is stronger than $\|\cdot\|_{-1}$.

Definition 5.10 (Step Function). Let $\tau > 0$. A function $u \in L^p([0,\infty),U)$ is called a *step function* on $[0,\tau]$ if there exists a partition $0 = t_0 < \cdots < t_n = \tau$ of $[0,\tau]$ and $u_1,\ldots,u_n \in U$ with

$$u = \sum_{i=1}^{n} \chi_{[t_{i-1}, t_i]} u_i.$$

Lemma 5.11 (Step Function Lemma). Let $\tau>0$ and $u:=\sum_{i=1}^n\chi_{[t_{i-1},t_i]}u_i\in L^p([0,\infty),U)$ a step function on $[0,\tau]$. Then $\Phi(\tau)u\in X$.

Proof.

$$\begin{split} \Phi(\tau)u &= \int_0^\tau T_{-1}(\tau - s)Bu(s)ds \\ &= \sum_{i=1}^n \int_{t_{i-1}}^{t_i} T_{-1}(\tau - s)Bu_i ds \\ &= \sum_{i=1}^n \int_0^{t_i - t_{i-1}} T_{-1}(\tau - t_{i-1} - s)Bu_i ds \\ &= \sum_{i=1}^n T_{-1}(\tau - t_i) \int_0^{t_i - t_{i-1}} T_{-1}(t_i - t_{i-1} - s)Bu_i ds \\ &= \sum_{i=1}^n T_{-1}(\tau - t_i) \underbrace{\int_0^{t_i - t_{i-1}}}_{Cdm(A_i) = X} T_{-1}(s)Bu_i ds \end{split}$$

Using the substitution $\varphi(s) := b - s$ with $b := t_i - t_{i-1}$.

Proposition 5.12 (Step Function Admissability Criterion). Let $\tau \in (0, \infty)$ and $M \geq 0$ such that for every step function u on $[0, \tau]$:

$$\|\Phi(\tau)u\|_X \le M\|u\|_{L^p}.$$

Then B is admissible.

Proof. Follows at once from the density of step functions in $L^p([0,\tau],U)$, the causality and the fact that $\|\cdot\|_X$ is stronger than $\|\cdot\|_{X-1}$.

Example 5.13 (Unilateral Right Shift Semigroup with Boundary Control). Let $X:=L^2([0,\infty),\mathbb{C}),$ p=2, $U:=\mathbb{C}$ and T the unilateral right shift semigroup. The adjoint semigroup T^* is the unilateral left shift semigroup. Let $J_X:X\to X'$ be the Riesz isomorphism. Let $i_d:X_1^d\to X$ be the natural injection. Then $(i_d)'\circ J_X$ extends to an anti-linear surjective isometry $J:X_{-1}\to (X_1^d)'.$ We have $X_1^d=H^1([0,\infty),\mathbb{C})$ (equality of sets, equivalence of norms). Let $\delta_0\in (H^1([0,\infty)))'$ be the point evaluation at 0. Define the control operator $B\in L(U,X_{-1})$ by $Bu_0:=u_0\cdot J^{-1}\delta_0.$ Then B is admissible and for all $u\in L^2([0,\infty),U)$ and $t,s\in [0,\infty)$:

$$(\Phi(t)u)(s) = \begin{cases} u(t-s) & s \in [0,t], \\ 0 & \text{else.} \end{cases}$$

Proof. Let $t \in [0, \infty), u \in L^2$ and $f \in H^1([0, \infty))$. Then

$$(J\Phi(t)u)f = \int_0^t JT_{-1}(t-s)Bu(s)dsf$$

$$= \int_0^t JT_{-1}(t-s)u(s)J^{-1}\delta_0 dsf$$

$$= \int_0^t \bar{u}(s)(T^*(t-s))'\delta_0 dsf$$

$$= \int_0^t \bar{u}(s)\delta_0 T^*(t-s)fds$$

$$= \int_0^t \bar{u}(s)f(t-s)ds$$

$$= \int_0^t \bar{u}(t-s)f(s)ds$$

$$= ((i_d)'J_X(\tilde{u}))f,$$

where $\tilde{u} \in X$ is defined by

$$\tilde{u}(s) := \begin{cases} u(t-s) & s \in [0,t], \\ 0 & \text{else.} \end{cases}$$

Therefore $\Phi(t)u=\tilde{u}$, which was to be proven. The substitution with $\varphi:[0,t]\to[0,t],\ \varphi(s):=t-s$ was used. Then $\varphi'=-1$ and $\varphi(0)=t, \varphi(t)=0$.

6 Admissible Observation Operators

This section is based on section 4.3 of [TW09]. In this section let:

- 1. Y a Banach space called the *output space*,
- 2. $p \in [1, \infty)$,
- 3. $C \in L(X_1, Y)$ called the *observation operator*,
- 4. P the truncation operator on $L^p([0,\infty),Y)$.

Definition 6.1 (Reflection Operator). Define the *reflection operator* $R:[0,\infty)\to L(L^p([0,\infty),Y))$ by

$$(R(\tau)f)(t) := \begin{cases} f(\tau - t) & t \in [0, \tau], \\ 0 & \text{else.} \end{cases}$$

Definition 6.2 (Output Map). Define the extended output map $\psi_1 \in L(X_1, L^p_{loc}([0, \infty), Y))$ by

$$(\psi_1 x_0)(t) := CT_1(t)x_0$$

and the output map $\Psi_1:[0,\infty)\to L(X_1,L^p([0,\infty),Y))$ by

$$\Psi_1(\tau)x_0 := P(\tau)\psi_1x_0.$$

Proposition 6.3 (Reflection Property). For all $x_0 \in X_1$ and $\tau, \sigma \in [0, \infty)$ with $\sigma \leq \tau$:

$$||R(\tau)\Psi_1(\sigma)x_0|| = ||\Psi_1(\sigma)x_0||.$$

Proposition 6.4 (Dual Composition Property). Let $\tau, \sigma \in [0, \infty)$ and $x_0 \in X_1$. Then

$$\psi_1 x_0 = \Psi_1(\tau) x_0 + S_r(\tau) \psi_1 T_1(\tau) x_0$$

and

$$\Psi_1(\tau + \sigma)x_0 = \Psi_1(\tau)x_0 + S_r(\tau)\Psi_1(\sigma)T_1(\tau)x_0.$$

Proof. Let $t \in [0, \infty)$. Then

$$\begin{split} (S_r(\tau)\psi_1T_1(\tau)x_0)(t) &= (S_r(\tau)S_l(\tau)\psi_1x_0)(t) = \begin{cases} 0 & t \leq \tau, \\ (\psi_1x_0)(t) \text{ else.} \end{cases} \\ \Psi_1(\tau+\sigma)x_0 &= P(\tau+\sigma)\psi_1x_0 \\ &= \Psi_1(\tau)x_0 + P(\tau+\sigma)S_r(\tau)\psi_1T_1(\tau)x_0 \\ &= \Psi_1(\tau)x_0 + S_r(\tau)\underbrace{P(\sigma)\psi_1}_{\Psi_1(\sigma)}T_1(\tau)x_0. \end{split}$$

Definition 6.5 (Admissible Observation Operator). C is called an *admissible observation operator* (for T) if there exists $\tau \in [0,\infty)$ such that $\Psi_1(\tau)$ has a (necessarily unique) extension to an operator in $L(X,L^p([0,\infty),Y))$.

Proposition 6.6. If C is admissible, then for all $t \in [0, \infty)$: $\Psi_1(t)$ has a (necessarily unique) extension to an operator in $L(X, L^p([0, \infty), Y))$.

Proof. Let $t \in [0, \infty)$ and assume that $\Psi_1(t)$ has an extension. Let $s \in [0, t]$ then $\Psi_1(s) = P(s)\Psi_1(t)$ and so $\Psi_1(s)$ also has an extension. From the dual composition property:

$$\Psi_1(2t) = \Psi_1(t) + S_r(t)\Psi_1(t)T_1(t)$$

and so $\Psi_1(2t)$ also has an extension.

Definition 6.7. If C is admissible define $\Psi:[0,\infty)\to L(X,L^p([0,\infty),Y))$ by $\Psi(t):=$ the unique continuous extension of $\Psi_1(t)$.⁴

Example 6.8 (Unilateral Left Shift Semigroup with Boundary Observation). Let $X:=L^2([0,\infty),\mathbb{C})$, T the unilateral left shift semigroup on X and $Y:=\mathbb{C}$. Then $X_1=H^1([0,\infty),\mathbb{C})$ (equality of sets, equivalence of norms). Let $C:=\delta_0$ be the point evaluation at 0. Then $C\in L(X_1,Y)$ but $C\notin L(X,Y)$. However for all $t\in [0,\infty)$:

$$(\psi_1 f)(t) = \delta_0 T_1(t) f = f(t).$$

Which implies, that for all $\tau \in [0, \infty)$: $\Psi_1(\tau) = P(\tau)|_{X_1}$, where P is the truncation operator on X. Therefore C is admissible and $\Psi = P$.

7 Duality Between Observation and Control

This section is based on section 4.4 of [TW09]. Throughout this section assume that X is a Hilbert space and assume the definitions of section 4.3 have been made $(J, X_1^d, \text{ etc.})$.

Definition 7.1. Let Z be a Hilbert space. Let $f \in L(Z, X_{-1})$. Define $f^{\sharp} \in L(X_1^d, Z)^5$ by letting it be the unique map that satisfies $\forall z \in Z, x_0 \in X_1^d$:

$$J(fz)x_0 = \langle f^{\sharp}x_0, z \rangle_Z.$$

Such a map exists, because $X_1^d \times Z \ni (x_0, z) \mapsto J(fz)x_0 \in \mathbb{C}$ is sesquilinear and continuous.

In addition let:

- 1. U a Hilbert space,
- 2. $B \in L(U, X_{-1}),$
- 3. Φ the controllability map associated to T and the control operator B (with p=2),
- 4. Ψ_1 the output map associated to T^* and the observation operator B^{\sharp} (with p=2).

 $^{^4}$ In [TW09] the output map, its extension and the extended output map are all called $\Psi.$

⁵In [TW09] f^{\sharp} is simply denoted f^{\sharp}

Proposition 7.2 (Duality of Observation and Control). Let $x_0 \in X_1^d$ and $\tau \in (0, \infty)$. Then for all $t \in [0, \infty)$:

$$((\Phi(\tau))^{\sharp}x_{0})(t) = \begin{cases} B^{\sharp}T^{*}(\tau - t)x_{0} & t \in [0, \tau], \\ 0 & \textit{else}. \end{cases} = (R(\tau)\Psi_{1}(\tau)x_{0})(t)$$

In particular

$$\|(\Phi(\tau))^{\sharp}x_0\| = \|\Psi_1(\tau)x_0\|.$$

If B is admissible for T and we view $\Phi(\tau) \in L(L^2([0,\infty),U),X)$, then $(\Phi(\tau))^*$ extends $(\Phi(\tau))^{\sharp}$.

Proof. Let $u \in L^2([0,\infty),U)$ and $x_0 \in X_1^d$. Then (because $T_{-1} = J^{-1} \circ (T^*|_{X_1^d})' \circ J$)

$$J(\Phi(\tau)u)x_0 = \int_0^\tau J(T_{-1}(\tau - \sigma)Bu(\sigma))x_0d\sigma$$

$$= \int_0^\tau J(Bu(\sigma))T^*(\tau - \sigma)x_0d\sigma$$

$$= \int_0^\tau \langle\langle B^{\sharp}T^*(\tau - \sigma)x_0, u(\sigma)\rangle_U d\sigma$$

$$= \langle v, u\rangle_{L^2},$$

where $v \in L^2$ is defined by

$$v(t) := \begin{cases} B^{\sharp} T^*(\tau - t) x_0 & t \in [0, \tau], \\ 0 & \text{else.} \end{cases}$$

If B is admissible, then $\Phi(\tau)u \in X$ and so

$$J(\Phi(\tau)u)x_0 = \langle x_0, \Phi(\tau)u \rangle_X = \langle (\Phi(\tau))^* x_0, u \rangle_{L^2}.$$

Theorem 7.3 (Duality of Admissability Concepts). B is an admissible control operator for T if and only if B^{\sharp} is an admissible observation operator for T^* .

Proof. Assume that B is admissible. Let $\tau \in [0,\infty)$. Then $\Phi(\tau) \in L(L^2([0,\infty),U),X)$ and so $(\Phi(\tau))^* \in L(X,L^2([0,\infty),U))$. Now for all $x_0 \in X_1^d$:

$$\|\Psi_1(\tau)x_0\|_{L^2} = \|(\Phi(\tau))^*x_0\|_{L^2} \le \|(\Phi(\tau))^*\|\|x_0\|_X.$$

Which implies that $\Psi_1(\tau)$ can be extended.

Assume that B^{\sharp} is an admissible observation operator. Let $\tau \in (0, \infty)$. Then for all $x_0 \in X_1^d$:

$$\|\Psi_1(\tau)x_0\|_{L^2} \le \|\Psi(\tau)\|\|x_0\|_X.$$

Let $u \in L^2([0,\infty),U)$ be a step function on $[0,\tau]$. Then for all $x_0 \in X_1^d$:

$$\langle x_0, \Phi(\tau)u \rangle_X = J(\Phi(\tau)u)x_0 = \langle (\Phi(\tau))^{\sharp} x_0, u \rangle_{L^2} = \langle R(\tau)\Psi_1(\tau)x_0, u \rangle_{L^2}$$

and so

$$|\langle \Phi(\tau)u, x_0 \rangle_X| \le ||R(\tau)\Psi_1(\tau)x_0|| ||u||_{L^2} \le ||\Psi(\tau)|| ||x_0||_X ||u||_{L^2}$$

which implies by density of X_1^d in X that

$$\|\Phi(\tau)u\|_X < \|\Psi(\tau)\|\|u\|_{L^2}.$$

The step function admissability criterion concludes that B is admissible.

References

- [EN99] Klaus-Jochen Engel and Rainer Nagel. *One-parameter semigroups for linear evolution equations*. en. Graduate Texts in Mathematics. Springer, 1999.
- [TW09] Marius Tucsnak and George Weiss. *Observation and Control for Operator Semigroups*. Birkhäuser, 2009.
- [Hyt+16] Tuomas Hytönen et al. Analysis in Banach spaces. en. 1st ed. Springer, 2016.