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The talk is based on the results from section 4.1 titled “Solutions of non-homogeneous differential equa-
tions" of | ]

1 The Inhomogeneous Initial Value Problem (ilVP)

Throughout this section let:
1. X (state space) and U (input space) Banach spaces,
2. T a Cy-semigroup on X with generator A,
3. B e L(U,X).
Definition 1.1 (Types of Solutions). A function x : [0,00) — X is called a

= Classical Solution of the ilVP associated to (A, B) with initial value o € dom(A) and input u €
C(]0,00),U) if:

1. x € CY([0,00), X),
2. z(0) = zo,
3. Vt €[0,00) : 2(t) € dom(A) and

&(t) = Ax(t) + Bu(t).

= Strong Solution® of the ilVP associated to (A, B) with initial value 2o € X and inputu € L}, ([0, 00),U)
if:

1. z € C([0,00), X),
2. z € LL _([0,00),Y), where Y := (dom(A), || - llgrcay)

Hn [ ] strong solutions are simply called solutions (in X).



3. Vt € [0,00) :
z(t) = xo —|—/ Azx(s) + Bu(s)ds.

= Mild Solution of the ilVP associated to (4, B) with initial value zo € X and input u € L{. ([0, 00),U)
if:

1. 2z € C([0,00), X),
2. Vt €0, 00) fo s)ds € dom(A) and

xt—xo—i—A/ ds+/ Bu(s)ds.

Proposition 1.2.
classical solution = strong solution = mild solution.

Lemma 1.3. Define ® : [0,00) — L(L{,.([0,00),U), X) by

D(t)u = /0 T(t — s)Bu(s)ds. (1.1)

Then ® is well-defined and strongly continuous.

Proof. To show well-definedness: Let u € L{ ([0,0c) and € [0,00). Then

t
I [ = Busas < s 176 [ uto s
0
To show strong continuity: Let ¢t € [0,00) and 6 > 0. Then
46 ¢
O(t+0)u— P(t)u = / T(t+ 6 — s)Bu(s)ds — / T(t — s)Bu(s)ds
0 0
¢ t+6
= / (T(t+6—s)—T(t—s))Bu(s)ds + / T(t+ 0 — s)Bu(s)ds
0 ¢
t+6
=(T)-DPt)u+ / T(t+ 6 — s)Bu(s)ds.
t

The norm of the first summand can be made small since T is strongly continuous and the norm of the second
summand by the dominated convergence theorem. On the other hand if ¢t — & > 0, then

t—6 ¢
Ot —d)u— P(t)u = /0 T(t — 6 — s)Bu(s)ds — /0 T(t — s)Bu(s)ds

t—s t
= / (T(t—0—38)—T(t—s))Bu(s)ds — / T(t — s)Bu(s)ds
0 t

-5

and both summands can be seen to converge to 0 as 6 — 0 by Lebesgues theorem of dominated convergence.
O

Theorem 1.4 (Existence and Uniqueness of Mild Solutions: the Principle of Duhamel). Define x :
[0,00) x X x L{ ([0,00),U) = X by

loc

x(t, xo,u) :=T(t)xo + /Ot T(t — s)Bu(s)ds. (1.2)

=d(t)u

Let zp € X and u € L ([0,00),U). Then x(-,z0,u) is the unique mild solution to the ilVP associated to
(A, B) with input u and initial value xg.



Proof. Let x := x(-, 29,u). The continuity of z follows from the fact that ® and T are strongly continuous.

Let t € [0,00): Then
¢ ¢ t s
/ x(s)ds:/ T(s)xods—i—/ / T(s — o)Bu(o)dods.
0 0 o Jo

The first summand is in the domain of A and A(fot T(s)xods) = T(t)xo — xo by a well known result. For the

second summand: Let
S:={(s,0)€[0,t]*:0<5<t,0<0<s}.

Then, using Fubinis-Theorem and the substitution 7 +— 7 — ¢
/ / (s — 0)Bu(o)dods —/ Xxs(s,0)T (s — o)Bu(o)d(a, s)
[0,1]2
/ / Xxs(s,0)T (s — o) Bu(o)dsdo

_ / / T(s - 0)Bu(o)dsdo
// o)dsdo

Now for all o € [0,1] : fotfg T(s)Bu(o)ds € dom(A) and
A(/O T(s)Bu(U)ds) =T(t — 0)Bu(c) — Bu(o)

by the same well known result. Since fOtT (t — 0)Bu(o) — Bu(o)do exists and A is closed (and the well
known property of the Bochner integral) the above implies, that fg Jo T(s — 0)Bu(o)dods € dom(A) and

A(/Ot /OST(SU) (f o)dods) - /OtT(to)Bu(a) — Bu(o)do.

Putting everything together: fg x sds € dom(A) (since it is a vector space) and

A</Ot x(s)ds) = T(t)zo — z0 + /Ot T(t — o)Bu(o)do — /Ot Bu(o)do.

Therefore z is a mild solution. Let y be another m||d solution with input w and initial value zy. Let z := y—x.
Then z € C([0,0), X) and for all ¢ € [0, 0) fo s)ds € dom(A) and

2(t) = y(t) — 2(t)

t
A</ z(s)ds).
0
Let ¢ € (0,00) and define g : [0,t] — X by

g(s) =Tt — s)</08 z(a)da).

Then g is differentiable and for all s € [0, ¢]:

s
g s=T(t—s)z(s)—T(t—s) A(/ z(a)da) =0.
0
Therefore g is constant and so

Since ¢ was arbitrary it follows that z = 0 by the continuity of z. O



2 The Unilateral Left Shift Semigroup

Definition 2.1 (Core). Let X be a Banach space and A : X D dom(A) — X a closed operator. A subspace
Y C dom(A) is called a core of A if Ay = A.

Proposition 2.2. Let T' be a Cy-semigroup with generator A on the Banach space X. Let Y C dom(A) a
subspace that is dense in X and T invariant. ThenY is a core of A.

Proof. See Proposition 1.7 of | ] O
Proposition 2.3 (Almost Everywhere Pointwise Evaluation of L?-valued Integrals). Let

1. X a Banach space,

2. pel,o00),

3. (S, o, ), (T, B,v) o-finite measure spaces,

4. F:S — LP(T, X) Bochner integrable.
Then there exists a (uu x v)-measurable function g : S x T — X with the following properties:

1. for u-almost all s € S : [T 3t — g(s,t)] = F(s),

2. for v-almost allt € T: S > s — g(s,t) is Bochner integrable and

([ )0 = [ oo (1)

3. g is unique in the sense that if h : S xT — X is measurable and satisfies 1., then h = g (u X v)-almost
everywhere.

Proof. See Proposition 1.2.25 in | ] O

Proposition 2.4 (Unilateral Left-Shift Semi-Group). Let X be a Banach space and p € [1,00). Define
the unilateral left-shift semi-group S by

S [0,00) — L(LP([0, 0), X))

2.2
t— f (s f(s+1)). (22)
Then
1. S is a Cy-semigroup,
2. the generator D of S is the closure of
Do = LP([0, 00), X)) 5 € ([0, 00), X) — LP([0, 00), X)) (23)
fr=f '
3. the Resolvent R of D satisfies YA € C with Re A > wy(9):
for almost all s € [0,00) : (R(A\)f)(s) = / exp(—=A(T — 8)) f(7)dr. (2.4)

In particular this shows, that every element of dom(D) has a (unique) continuous representant.

Proof. To "1.": S is Cy-semi-group: skipped.

To "2.": The space C2°([0,00), X)) is a dense, S invariant subspace. If we can show that C'°([0,00), X) C
dom(D) and that A is given by differentiation on this space, then we are finished by proposition 2.2. However
this is a simple consequence of the FTC and the compact support property: Let f € C2°([0,00),X) and
b € [0,00) such that the support of f is contained in [0,b]. For all s € [0,00),h € (0, 00):

. B n) — s+h
Lle o = LBl g = [ - sy



Since f’ is continuous and supported in the compact set [0, b] it is uniformly continuous. Let € > 0. Therefore
(by definition) there exists ¢ € (0, 00):

Va,y € [0,00) : |z —y[ <= [f'(z) = f'(W) <&
Then for all h € (0,6) (note that the support of S & f is contained in [0, b]):

Shf-f
===t

Shfs—fs 1 [sth
Pl <t s PSS < s 2 [ 10 - p)de<b e
s€[0,b] selop] s mmm—

To "3.": Let f € LP([0,00), X) and A € C with Re A > wy(S). Define F : [0, 00) — LP([0, 00), X) by
F(t) :==exp(=A-1)- S(t) f
Then .
RO f = /O F(t)dt.
The function g : [0,00) x [0,00) — X defined by
g(s, 1) == exp(=At) f(t + s)

is product measurable and satisfies s — g(s,t) = F(t) for almost all ¢ € [0,00). Therefore using proposition
2.3 for almost all s € [0, 00):

vy N = ([ P
:/Oooexp(—)\t)f(s—l—t)dt
_ / " exp(A(t — ) f(D)dt

Definition 2.5 (Sobolev Spaces). In the situation of proposition 2.4: Define
W([0,00), X) = (dom D, || - [|1.5),

where 1
e = (1% + IDFIE) "

Then W1([0,00), X) is a Banach space, because the norm || - ||1, is (equivalent to) the graph norm of D
and D is closed. Furthermore we define

Wl’p([O,oo),X) ={fe Ll ([0,00),X):Vt e (0,00)Fg € W"P([0,00), X) with gl = flo.g}

loc loc

If X is a Hilbert space we also define H'([0, 00), X) := W2([0,00), X) and HL. ([0, 00), X) := W,-2([0, 00), X).
In this case H' is a Hilbert space as well.

3 Existence of Classical Solutions

Throughout this section let:
1. X (state space) and U (input space) Banach spaces,
2. T a Cy-semigroup on X with generator A,
3. Be L(U,X),
4. p€l,00),

5. &g : WLP([0,00),U) — U the point evaluation of the unique continuous representant at zero,



6. S the unilateral left shift semigroup on L?([0,00),U) and D its generator,

7. ®:[0,00) = L(LP([0,00),U), X) defined by
O(t)u := /0 T(t — s)Bu(s)ds.

Theorem 3.1. Let X := X x LP([0,00),U). Define T : [0,00) — L(X) by

o= (" o)

Then:
1. T is a Cy-semigroup,
2. the generator A of T is given by
-

dom(A) = dom(A) x WHP([0, 00), U),

with

3. for all (zg,u) € X and A € C in some right half plane:

/0 exp(—At)z(t, zo,u)dt = (A — A)~* (xo —|—/0 exp(—At)Bu(t)dt).

Proof. To “1.": Clearly 7(0) = I. To show the functional equation let ¢, s € [0,00). Then
_(T(s) @(s)\ (T() @(t)\ _ [(T(t+s) T(s)®(t)+ (s)S(t)
T = ( 0 S(s)) ( 0 S(t)) = ( 0 S(t+ ) ) '
Therefore it is left to show that
D(t+s) =T(s)P(t) + P(s)S(¥).
To this end let u € LP([0,00),U). Then
T(s)®(t)u + ®(s)S(t)u =T(s) /o T(t — 0)Bu(o)do + /05 T(s—o)B(S(t)u)(o)do
= /t T(t+ s —o)Bu(o)do + /S T(s —o)Bu(t+ o)do
0 0

t t4s
= / T(t+ s —o)Bu(o)do + / T(t+ s — o)Bu(o)do
=d(t+9)f.

The strong continuity follows from the fact that S, T, ® are strongly continuous.

(3.1)

(33)

(34)

To "2": Let R4, Ra,Rp be the Resolvent of A, A, D. Let A € C with Re A larger than wo(7T),wo(S) and

wo(T). Let u € LP([0,00),U). Then

RA(N) <fﬂo> _ /OOO exp(—At)T(t) @0) df — <RA(/\)$0 + f]%“;eéil))i—/\t)@(t)udt) '

u

Now let
M :={(t,s) € [0,00)% : s < t}.



/0 exp(—At)®(t)udt = /0 exp(—)\t)/o T(t — s)Bu(s)dsdt
= /[0 . X (s, t) exp(—=A)T(t — s)Bu(s)d(s,t)
= /OO /00 exp(—At)T(t — s)Bu(s)dtds
= /0OO /000 exp(—At)T'(t) exp(—As)Bu(s)dtds
= /OO exp(—At)T'(t) /OO exp(—As)Bu(s)dsdt
0 0

= Ra(N) /000 exp(—As)Bu(s)ds.

On the other hand

(AI_ (A B5O))_1 _ (RA(/\) RA()\)B(FORD(A))’

0 D 0 Rp(A)
because
()\I A —Bdy ) (RA()\) RA()\)BdoRD(A)> _ (I (M — A)RA(N)BooRp(N) — B(FORD()\)> g
0 M —D 0 Rp(N) 0 (M —D)Rp(N) ’

Other equation analogue. Now let u € L?([0,00),U). Then
Ra(\)BooRo(\u = Ra(\)B / exp(—Ar)u(r)dr = Ra(\) / exp(Ar) Bu(r)dr,
0 0
because for almost all s € [0,00) : (Rp(M\)u)(s) = [ exp(=A(7 — 5)) f(7)d7. This shows that

S

/000 exp(—At)®(t)udt = Ra(N\)BioRp(Nu

A T— Ayt = ()J— (g‘ Bl‘;o))_l.

Corollary 3.2. Let x¢ € dom(A) and u € WP([0,00),U). Then there exists a classical solution to the ilVP
associated to (A, B) with initial value xy and input u.

and so in total

O

Proof. By assumption (zg,u) € dom(A). Therefore z : [0,00) — X defined by

_ (=0 _ Zo
x(t) = (aa(t)) =T(t) (u)
is in C1([0, ), X) and satisfies (0) = (xo,u). Furthermore for all t € [0, c0):
L'Cl(t) . o - A B(SO xl(t) . Ax1(t) + B(EQ(O)
<az:2(t>) == A = <0 D > (a:z(t)) - ( Day(t) ) '
Now Bz5(0) = B(S(t)u)(0) = Bu(t). This implies, that x; is the classical solution to the ilVP associated

to (A, B) with initial value x¢ and input w. O

Corollary 3.3. Let 29 € dom(A) and u € W,5P([0,00),U). Then there exists a classical solution to the ilV/P
associated to (A, B) with initial value xo and input w.

Proof. Let T € (0,00) and g € WP([0,00),U) with g|(o,-] = ul[o,-- Then for all t € [0, 7]
x(t, g, u) = x(t, g, g).
And z(-, zo, g) is a classical solution by the preceding. O

Throughout let:
1. (X,]| - |) a Banach space,

2. T a Cy-semigroup on X with generator A,

3. Bep(A).



4 Interpolation-, Extrapolation-Spaces and Semigroups

4.1 The Interpolated Semigroup
Definition 4.1 (Interpolated Space). Define the interpolated space (X1, | - ||1) by
X1 :=dom(A)
and
[/l == [[(BT — A)z].
Proposition 4.2. The following are true:

1. (BI — A) is a surjective isometry X1 — X

2. || - |l1 is equivalent to the graph norm of A (and so X, is a Banach space and || - ||1 is stronger than

- 1)
Proposition 4.3 (Interpolated Semigroup). Define the interpolated semigroup? T} : [0,00) — L(X1) by
Ti(t) == (BT — A)"'T(#)(BI - A).
Then
1. Ty is a Cy-semigroup,
2. The generator Ay of Ty is given by the restriction of A to dom(A?),

3. T is the restriction of T.

4.2 The Extrapolated Semigroup

Definition 4.4 (Extrapolated Space). Define the extrapolated space (X_1,| - ||-1) as the completion of
X with respect to the norm || - || o (8- 1 — A)~L.

Proposition 4.5. The following is true:

1. BI — A (resp. A) is an isometry with dense range (resp. continuous) as an operator (dom A, || - o) —
X1,

2. BI—A_q is the unique extension of 31— A to a surjective isometry X — X_1, where A_; € L(X, X_4)
is the unique continuous extension of A.

Proposition 4.6 (Extrapolated Semigroup). Define the extrapolated semigroup® 71 : [0,00) — L(X_1)
by
T 1(t) == (BT — A_\)T(t)(BI — A_1)~".

Then
1. T ;1 is a Cy-semigroup,
2. The generator of T 1 is A_1,
3. T 1 extends T.

Proof. The first two points are obvious since T is similar to T and since (3] — A_1)(dom(A)) = X. And
for xp € X:

(BI — A_\)A(BI — A_y)"'w = (BI — A_))A(BI — A)'a
= (BI — A_1)(B(BI — A) 'z — @)

—BI—BI+ A,z
since
I=p(BI—A)""—ABI—A)".
The third point follows from the fact, that 7' commutes with its generator and that || - || is stronger than
Il - 11 O
2in | | 71 is denoted by the same symbol as the original semigroup
Sin | ] T—1 is denoted by the same symbol as the original semigroup



Diagram 4.7 (Inter-/Extra-Polation Summary). The relationship between the inter-/extra-polation spaces
and semigroups are visualised in the following commutative diagram, where both squares commute for any
t € [0,00) and all the vertical arrows are surjective isometries:

X, T_1(t) X_,
ﬁI—A—lT J(ﬂI—A_l)l
x — "W x

BIA/]\ J(m—A)l

4.3 The Hilbert Space Case
Assume (only for this subsection) that X is a Hilbert space. Let:
1. Jx : X — X' the surjective and anti-linear Riesz isometry,
2. T™* the adjoint semigroup of T (whose generator is A*),
3. X{ the interpolation space associated to T and /3 (possible since 5 € p(A*)),
4. ig: X{ — X the natural injection.
Proposition 4.8 (Summary of First Seminar). The following is true:

1. i4 is continuous and has dense range,

2. (ig)' o Jx : X — (X@)" has dense range,
3. forall x € X: ||z| -1 = ||i;(Jx ()],
4. (ig)' o Jx extends to a unique anti-linear and surjective isometry J : X _1 — (X¢)’,
5. Forallt €]0,00):
T_1=J Yo ((T")1(t)) o J.
Proof. This was shown in the first seminar. O

Diagram 4.9 (Inter-/Extra-Polation Summary, Hilbert Case). The relationship between the inter-/extra-
polation spaces and semigroups in the Hilbert space case are visualised in the following commutative diagram,
where all three squares commute for any t € [0,00) and all the vertical arrows are surjective isometries:

(xty O (xay
J J1
X, T_1(t) X,
BI—A_, (BI—A_1)~1

BI—A (BI-A)~!




5 Admissible Control Operators
This section is based on section 4.2 of [ ]. In this section let:
1. U a Banach space called the input space,
2. pel,00),
3. Be€ L(U,X_4) called the control operator,
4. S; (resp. S,) the unilateral left (resp. right) shift semigroup on L?([0, c0),U).

Definition 5.1 (Truncation Operator). Define the truncation operator

P :]0,00) — L(L%

loc

([0,00),U), LP([0,00), 1))

by

Definition 5.2 (Controllability Map). Define the controllability map ® : [0,00) — L(L*([0,00),U), X_1)
by

D(t) ::/O T_1(t — s)Bu(s)ds.

Proposition 5.3 (Causality Property). For all s,t € [0,00) with s >t and u € L} ([0,00),U):

loc
/O T_1(t — o) Bu(o)do = ®(t)P(s)u.

Proposition 5.4 (Composition Property). For allt,s € [0,00) and u € LP(]0,00),U):
Ot +s)u=T_1(t)P(s)u+ ®(t)Si(s)u.
Proof. Has been proven last seminar. O

Definition 5.5 (Admissible Control Operator). B is called an admissible control operator (for T') if there
exists 7 > 0 with ran(®(7)) C X.

Proposition 5.6. If B is admissible, then for all t € [0,00):
o(t) € L(L([0,00), U), X).
Proof. (BI — A_1)™' € L(X_1,X). Let u € LP([0,00),U). Then
O(T)u = (BT — A)(BI — A) " ®(1)u
= (BI = A)(BI = A1)~ @(T)u
= (BI — A) /T(,BI —A_)7'T (1 — 5)Bu(s)ds
0
= (BI — A) /T T 1(r—s)(BI — A_1) ' Bu(s)ds
0 —_—
EL(U,X)

= (BI — A) /OT T(1 —5)(BI — A_1) "' Bu(s)ds.

Where the final integration is carried out in X, which is possible since || - || is stronger than || -||—1. Therefore
®(7) is the composition of a closed and a bounded operator and hence closed itself (as an operator with
values in X). The closed graph theorem implies, that ®(7) is bounded. Let o € [0,00) and assume that
®(o) € L(LP([0,00),U), X). Then so is ®(20), because (using the composition property)

O(20) =T_1(0)®(0) + ®(0)Si(0) = T(0)®(0) + (0)Si(0).

10



From the above it follows by induction, that ®(2%7) is continuous for all k € N.
Let o € [0,00) and assume that ®(o) € L(LP([0,00),U), X). If t € [0,0] and u € LP([0,00)U), then

O(t)u = /0 T_1(t — s)Bu(s)ds

/(7 T_1(0c — s)Bu(t — o + s)ds
&(

0)Sy (o — t)u.

Which implies that ®(t) € L(LP([0,00),U), X). O
Proposition 5.7. Let t,s € [0,00) witht > s. Then ||®(s)| < ||P(t)]].
Proof. Let u € LP([0,00),U). Then

D(t)S,(t — s)u

D(s+ (t—9))S-(t — s)u
T(s)P(t — $)Sy(t — s)u+ P(s)Si(t — 8)S.(t — s)u
=T(s)P(t —s) P(t —5)Sp(t —s)u+ ®(s) Si(t — 5)Sp(t —s)u

0 =1

= O(s)u.

and so (using ||S,(t — s)|| < 1)
[@(s)ul < [|@@@)][[lu]-
Which in turn implies that || ®(s)|| < [|®(2)]|. O

Proposition 5.8. Assume that B is admissible. Then ® is strongly continuous as a function taking values in
L(L*([0,00),U), X).

Proof. Let u € LP(]0,00),U). For all ¢t € [0, 1]:

[@(E)ull = @) P(t)ul
< @I P E)ul -
——

—0, t—0
Let ¢,s € [0,00). Then

[t + s)u — @()ul = |T(s)D(t)u+ D(s)Si(t)u — D()ul| < ||T(s)(P(t)u — D()uw)|| + [|D(s)Si(t)ul| -

—0,s—0 —0,5—0

This implies the strong continuity from above of ® at t. Let ¢, s € [0,00) with s <t. Then

O(t)=D(t—s+s5)=T(t—s)P(s)u+ Pt — 5)5(s)

and so
[D(t)u — (t = s)ul| = [[T(t = s)P(s)u + B(t = 5)(Si(s)u — u)]|
< sup [[T(o)[| [|[@(s)ull +[ 2@ |Si(s)u —u] .
o€[0,t] ~—— —_——
—0,s—0 —0,s—0
Which proves the strong continuity of ® from below at ¢ (using strong continuity of .S). O
Proposition 5.9 (Existence of X Valued Solutions). Assume that B is admissible. Then for every xy € X
and u € LY. ([0,00),U) there exists a unique strong solution in X_; to the ilVP associated to (A_1, B) with

initial value x¢ and input u. Furthermore this solution is in C(]0,00), X).

Proof. Let x be the mild solution (in X_1). From last time and the causality property we know for all
s € [0,00) and Vt € [0, s]:
x(t) =T-1(t)zo +P(t)P(s)u

——
=T(t)$0

11



and so z € C([0,00), X). In particular this shows that z € L{ ([0,00),Y), where Y := (dom(A_1), || - [|ar)-
Since z is the mild solution: = € C(]0,00), X_1) and for all ¢ € [0, 00) : fot z(s)ds € dom(A_1) and

¢ t
x(t) —xo = A_l/ x(s)ds +/ Bu(s)ds.
0 0
Which implies that for all ¢ € [0, c0):
t t
x(t) — xo :/ A,lx(s)ds—f—/ Bu(s)ds
0 0
¢
:/ A_yz(s) + Bu(s)ds,
0

because A_; € L(X,X_1),z € C([0,00), X) and || - || is stronger than || - ||_;. O

Definition 5.10 (Step Function). Let 7 > 0. A function v € L?([0,00),U) is called a step function on
[0, 7] if there exists a partition 0 =t < --- < t, = 7 of [0,7] and uy,...,u, € U with

n
U= § :X[ti—hti]ui'
=1

Lemma 5.11 (Step Function Lemma). Let 7 > 0 and u := > 1" | X1, , 1w € LP([0,00),U) a step
function on [0,7]. Then ®(T)u € X.

Proof.
O(r)u = / T_1(m — s)Bu(s)ds
0
n ti
= Z/ T_1(T — s)Bu,ds
i=1"ti-1
n ti—ti—1
= Z/ T_1(r —t;—1 — $)Bu;ds
i=1"0
n ti—ti—1
= ZT_l(T — tl) / T_l(ti — ti—l — S)B’U,ids
i=1 0
n ti—ti—1
= Z T—l(T — ti) / T_l(S)B’U,Z'dS
i=1 0
€dom(A_1)=X
Using the substitution ¢(s) := b — s with b :=t; — t;_;. O

Proposition 5.12 (Step Function Admissability Criterion). Let 7 € (0,00) and M > 0 such that for

every step function u on [0, 7]:
[@(T)ullx < Mllul[rs.

Then B is admissible.

Proof. Follows at once from the density of step functions in LP([0,7],U), the causality and the fact that
| - || x is stronger than || - ||x_,- O

Example 5.13 (Unilateral Right Shift Semigroup with Boundary Control). Let X := L?([0,00),C),
p =2, U :=C and T the unilateral right shift semigroup. The adjoint semigroup T is the unilateral left shift
semigroup. Let Jx : X — X’ be the Riesz isomorphism. Let i4 : X{ — X be the natural injection. Then
(iq)’ o Jx extends to an anti-linear surjective isometry J : X_; — (X{)". We have X¢ = H(]0, ), C)
(equality of sets, equivalence of norms). Let §y € (H'([0,00)))" be the point evaluation at 0. Define the
control operator B € L(U, X_1) by Bug :=ug - J 'dy. Then B is admissible and for all u € L*([0,00),U)
and ¢, s € [0,00):

u(t—s) selo,t],

0 else.

(@(t)u)(s) = {
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Proof. Let t € [0,00),u € L? and f € H'([0,00)). Then
t
(JO(t)u)f = / JT_1(t — s)Bu(s)dsf
0
= /t JT_1(t — s)u(s)J L6odsf
0
w(s)(T*(t — s)) dodsf

u(8)0oT* (t — s)fds

where 4 € X is defined by

Therefore ®(t)u = @, which was to be proven. The substitution with ¢ : [0,¢] — [0,t], ¢(s) :=t — s was
used. Then ¢’ = —1 and ¢(0) =1, p(t) = 0. O

6 Admissible Observation Operators

This section is based on section 4.3 of | ]. In this section let:
1. Y a Banach space called the output space,
2. pel,00),
3. C € L(X1,Y) called the observation operator,

4. P the truncation operator on L?([0,00),Y).

Definition 6.1 (Reflection Operator). Define the reflection operator R : [0,00) — L(L?([0,00),Y")) by

(R(T)f)(t) = {f(T 7t) te [077—]7

0 else.

Definition 6.2 (Output Map). Define the extended output map 1 € L(Xy, Lt

loc

([0,00),Y)) by
(10)(t) := CTy(t)z0
and the output map ¥y : [0,00) — L(X1, LP(]0,00),Y)) by
Uy (7)xg := P(1T)120.
Proposition 6.3 (Reflection Property). For all zop € X1 and 7,0 € [0,00) with o < 7:
[R(T)®1(0)zoll = [[¥1(a)zol|-
Proposition 6.4 (Dual Composition Property). Let 7,0 € [0,00) and 2o € X;. Then
P1xo = Vi (7)x0 + Sp (7)1 T1(7) 0

and
\Ifl(’T + J).’EO = \1/1(7—)$0 + ST(T)\IJI(O—)Tl(T)‘rO‘
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Proof. Let t € [0,00). Then

0 t<,
<&mwﬂmmw%4ﬁw&mwmw*{wwmwme

\Ill(T + O'){L'() = P(T + U)¢1$0
= Vi (1)zo + P(T + 0)Sp (7)1 T1(T)z0
= \I/l(T)JjO =+ ST,(T) P(O’)wl T (T)J?o.
¥ (o)

O

Definition 6.5 (Admissible Observation Operator). C is called an admissible observation operator (for
T) if there exists 7 € [0,00) such that Uy(7) has a (necessarily unique) extension to an operator in
L(X,L*([0,00),Y)).

Proposition 6.6. If C is admissible, then for all t € [0,00) : U1(t) has a (necessarily unique) extension to
an operator in L(X, LP([0,00),Y)).

Proof. Let t € [0,00) and assume that Wq(¢) has an extension. Let s € [0,¢] then Uy(s) = P(s)¥1(t) and
so ¥y (s) also has an extension. From the dual composition property:

Uy (2t) = Uy (t) + S, (0) 01 ()T ()
and so Wy (2t) also has an extension. O

Definition 6.7. If C' is admissible define ¥ : [0, 00) — L(X, LP([0,00),Y")) by ¥(¢) := the unique continuous
extension of Wy(t).*

Example 6.8 (Unilateral Left Shift Semigroup with Boundary Observation). Let X := L?([0,00),C), T
the unilateral left shift semigroup on X and Y := C. Then X; = H'([0, ), C) (equality of sets, equivalence
of norms). Let C' := §y be the point evaluation at 0. Then C' € L(X;,Y) but C ¢ L(X,Y). However for all
t €10,00):

(1 F)(1) = ST (8)f = f(t).

Which implies, that for all 7 € [0,00) : U1(7) = P(7)|x,, where P is the truncation operator on X . Therefore
C'is admissible and ¥ = P.

7 Duality Between Observation and Control

This section is based on section 4.4 of [ ]. Throughout this section assume that X is a Hilbert space
and assume the definitions of section 4.3 have been made (J, X¢, etc.).

Definition 7.1. Let Z be a Hilbert space. Let f € L(Z, X_,). Define f* ¢ L(X{, Z)® by letting it be the
unique map that satisfies Vz € Z, 2y € X{:

J(f2)zo = (ffzo, 2) 2.
Such a map exists, because X{ x Z 3 (20, 2) — J(fz)xzo € C is sesquilinear and continuous.
In addition let:
1. U a Hilbert space,
2. Be L(U, X_4),
3. @ the controllability map associated to T' and the control operator B (with p = 2),

4. U, the output map associated to T and the observation operator B* (with p = 2).

4In [ ] the output map, its extension and the extended output map are all called 0.
5In | ] £ is simply denoted f*
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Proposition 7.2 (Duality of Observation and Control). Let 7o € X{ and 7 € (0,00). Then for all
t €10,00):
B*T*(1 —t)zg t€[0,7],

0 else. = (R(T)W1(7)0)(t)

((@(7))Fwo)(t) = {
In particular
1(@(7))F o]l = |1 (7)ol
If B is admissible for T and we view ®(1) € L(L?([0,00),U), X), then (®(7))* extends (®(7))*.
Proof. Let u € L?([0,00),U) and xo € X{. Then (because T_; = J 1o (T*|xa) 0 J)

J(®(7)u)z0 = A (T (7 — 0)Bu(o)wodo

= /OT J(Bu(c))T*(t — o)xodo

= /OT<<BuT*(T —0)xg,u(o))ydo
= <U,U>L2,

where v € L? is defined by

1 ALY O
v(t) — BT (’T t)l'() te [O,T],
0 else.

If B is admissible, then ®(7)u € X and so
J(®(T)u)xo = (20, P(T)uyx = ((P(7)) 20, u) 2.
O

Theorem 7.3 (Duality of Admissability Concepts). B is an admissible control operator for T if and only
if B is an admissible observation operator for T*.

Proof. Assume that B is admissible. Let 7 € [0,00). Then ®(7) € L(L?([0,00),U), X) and so (®(7))* €
L(X,L?([0,00),U)). Now for all zp € X

101 (7)zoll2 = [[(@(r)) ol[L2 < [[(D(7))*[Illxollx -

Which implies that ¥, (7) can be extended.
Assume that B* is an admissible observation operator. Let 7 € (0,00). Then for all 2y € X{:

[W1(7)zollz> < 1 (7)]llzollx-
Let u € L2([0,0),U) be a step function on [0, 7]. Then for all zy € X¢:
(w0, ®(T)u)x = J(®(T)u)zo = ((®(7))*z0, u) 12 = (R(T)¥1(T)20, u) 2

and so
(@(T)u, zo) x| < [[R(T)Wr(T)zoll[lullz < € (T)|[||lzollx [lulz2

which implies by density of X{ in X that
[@(T)ullx < W)l l|ullL2-

The step function admissability criterion concludes that B is admissible. O
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