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Definition (Discrete-time system)
o Discrete-time system ¥ := (A, B,C,D) € L(X) x L(U,X) x L(X,Y) x L(U,D)),
where X, U, are Hilbert spaces.
e State map z5 : N x X xUN — X,
z4(0, 20, ug) = 2o,
zg(j + 1, 20, ug) = Azq(j, 20, ug) + Bug(j).
o Output map y; N x ¥ xUN — Y,
va(s, 20, ug) := Cz4(j, 20, ug) + Dug(j)-

Proposition (Discrete-time Duhamel’s principle)

j-1
Vzo € X, uqg €UN,j €N : z4(j, 20, ug) = Az + Z AkBud(j —1—k).
k=0
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Definition (Discrete-time cost functional)

Jg: X xUN — [0,00],

oo
Ja(z0, ug) ==Y lya(, 20, ua) 13 + llua() 13-
=0

Discrete-time Linear-Quadratic (LQ) optimal control problem

For all zg € X prove existence and uniqueness of a minimizer of Jy(zp,*) and find an
explicit formula for it.
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Definition (Optimizability)
> is called optimizable if
Vzo € X Jug € UN : Jy(z0, ug) < oco.

Theorem (Existence and uniqueness of the optimal control)
Assume that ¥ is optimizable. Then for every zy € X there exists a unique element of
(N, U) denoted uSP (s, 29) with

Ju(zo, P (e, 20)) = inf Jy(z0, V).

d(20, uy” (e, 20)) /e d(z0,v)

Definition (Optimal output/state)

For zg € X let y**(, z0) the output and z5*(s, zo) the state with input u3*(s, z) and
initial value zp.

Jannik Daun LQ Optimal Control for Discrete Time Systems 8/16



Discrete-time systems
LQ optimal control in discrete-time LQ optimal control via state feedback
The CARE and the FARE

Proposition (Continuity and linearity of the optimal control)

Assume that ¥ is optimizable. Then:
@ The map
T:% — 2(N,U) x (3(N,)),
I(z0) := (ugF*(+ 20), y3*" (%, 20))
is linear and bounded.
@ The map N :=TI*T € L(X) is self-adjoint, nonnegative and ¥zy € X:
(Nzo,20)x = (Tz0,Z20) = Ju(20, uP*(*, 20))-
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Definition (Feedback operator)
For P € L(X) let

Q(P) :=D*D +1+B*PB, R(P):=D*C+B*PA, F(P):=—-Q(P)*R(P).
The operator F(P) is called the feedback operator associated to P.

Theorem (Optimal control by state feedback)

Assume that X is optimizable.
Then Vzg € X,j € N:

Zspt(ja ZO) = (A+ B]:(n))]ZOa
uPt(j, 20) = F(M)zg" (U, 20)-
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Lemma (Bellman’s principle of optimality)

Assume ¥ optimizable. Let zg € X, ug € U, z1 := Azy + Bug and yy := Czy + Duy.
Then
(20, Nzo)x < [lyol%) + lluollf; + (21, Nz1)x
with equality if and only if ug = u°?%(0, z9) and in that case for all j € N:
Uspt(j + 17 ZO) = uzpt(jv Zl)‘

Lemma (Key lemma)

Let P € L(X) self-adjoint and nonnegative. Define
G:XxU—[0,00),
G(20, uo) = [luollz; + llyoll3 + (21, Pz1)x,
where zy := Azg + Bug and yy := Czg + Duy.
Then for every zyg € X : G(zp,*) has a unique global minimum at F(P)zy and
G(z0, F(P)20) = (20,C*C + A*PA — R(P)*Q(P) *R(P)z0) x.
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Definition (CARE)

P € L(X) is called a solution to the control algebraic Riccati equation (CARE)
associated to X if

P=C*C+ A*PA— R(P)*Q(P)"'R(P).

Proposition (Characterisation of optimizability via the CARE)

e If X is optimizable, then I is a solution to the CARE.

o If the CARE has a self-adjoint and nonnegative solution, then ¥ is optimizable.
([0C04], Lemma 3.3)
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Definition (FARE)

P € L(X) is called a solution to the filter algebraic Riccati equation (FARE)
associated to X if P is a solution to the CARE associated to the adjoint system
(A*,C*, B*, D*).

Theorem (Sufficient condition for uniqueness of solution to the CARE)

Assume that the FARE has a self-adjoint and nonnegative solution.

Let My € L(X) be a self-adjoint and nonnegative solution to the CARE with
r(A+ BF(Mpy)) < 1,

where r denotes the spectral radius.

Then Ty is the unique self-adjoint and nonnegative solution to the CARE.

([OC04], Lemma 3.7)
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Proposition (Reduction to finite dimension)
Let:

o X :=12([0,1],C"), U := L?([0,1],CP), Y := L?(]0,1],C™),

@ Ay € C™" By € C"™P, Cy e C™" Dy e C™*P, Py C*",

o A,B,C,D,P := acting by multiplication with Ag, By, C4, Dy, P4 on L2.
Then:

e If Py is a self-adjoint, nonnegative solution to the CARE/FARE associated to
(Ag, By, Cdq, Dyg), then P is a self-adjoint, nonnegative solution to the
CARE/FARE associated to (A, B,C, D),

@ The spectral radius of Ay + ByF(Pq4) (as a matrix) is equal to the spectral radius
of A+ BF(P).

v
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