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Definition (Discrete-time system)
Discrete-time system Σ := (A, B, C, D) ∈ L(X) × L(U ,X) × L(X, Y) × L(U , Y),
where X, U , Y are Hilbert spaces.
State map zd : N × X × UN −→ X,

zd(0, z0, ud) := z0,

zd(j + 1, z0, ud) := Azd(j , z0, ud) + Bud(j).
Output map yd : N × X × UN −→ Y,

yd(j , z0, ud) := Czd(j , z0, ud) + Dud(j).

Proposition (Discrete-time Duhamel’s principle)

∀z0 ∈ X, ud ∈ UN, j ∈ N : zd(j , z0, ud) = Ajz0 +
j−1∑
k=0

AkBud(j − 1 − k).
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Definition (Discrete-time cost functional)

Jd : X × UN −→ [0, ∞],

Jd(z0, ud) :=
∞∑

j=0
∥yd(j , z0, ud)∥2

Y + ∥ud(j)∥2
U .

Discrete-time Linear-Quadratic (LQ) optimal control problem
For all z0 ∈ X prove existence and uniqueness of a minimizer of Jd(z0, •) and find an
explicit formula for it.
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Definition (Optimizability)
Σ is called optimizable if

∀z0 ∈ X∃ud ∈ UN : Jd(z0, ud) < ∞.

Theorem (Existence and uniqueness of the optimal control)
Assume that Σ is optimizable. Then for every z0 ∈ X there exists a unique element of
ℓ2(N, U) denoted uopt

d (•, z0) with
Jd(z0, uopt

d (•, z0)) = inf
v∈UN

Jd(z0, v).

Definition (Optimal output/state)

For z0 ∈ X let yopt
d (•, z0) the output and zopt

d (•, z0) the state with input uopt
d (•, z0) and

initial value z0.
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Proposition (Continuity and linearity of the optimal control)
Assume that Σ is optimizable. Then:

The map
I : X −→ ℓ2(N, U) × ℓ2(N, Y),
I(z0) := (uopt

d (•, z0), yopt
d (•, z0))

is linear and bounded.
The map Π := I∗I ∈ L(X) is self-adjoint, nonnegative and ∀z0 ∈ X:

⟨Πz0, z0⟩X = ⟨Iz0, Iz0⟩ = Jd(z0, uopt(•, z0)).
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Definition (Feedback operator)
For P ∈ L(X) let

Q(P) := D∗D + I + B∗PB, R(P) := D∗C + B∗PA, F(P) := −Q(P)−1R(P).
The operator F(P) is called the feedback operator associated to P.

Theorem (Optimal control by state feedback)
Assume that Σ is optimizable.
Then ∀z0 ∈ X, j ∈ N:

zopt
d (j , z0) = (A + BF(Π))jz0,

uopt(j , z0) = F(Π)zopt
d (j , z0).
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Lemma (Bellman’s principle of optimality)
Assume Σ optimizable. Let z0 ∈ X, u0 ∈ U , z1 := Az0 + Bu0 and y0 := Cz0 + Du0.
Then

⟨z0, Πz0⟩X ≤ ∥y0∥2
Y + ∥u0∥2

U + ⟨z1, Πz1⟩X
with equality if and only if u0 = uopt(0, z0) and in that case for all j ∈ N:

uopt
d (j + 1, z0) = uopt

d (j , z1).

Lemma (Key lemma)
Let P ∈ L(X) self-adjoint and nonnegative. Define

G : X × U −→ [0, ∞),
G(z0, u0) := ∥u0∥2

U + ∥y0∥2
Y + ⟨z1, Pz1⟩X,

where z1 := Az0 + Bu0 and y0 := Cz0 + Du0.
Then for every z0 ∈ X : G(z0, •) has a unique global minimum at F(P)z0 and

G(z0, F(P)z0) = ⟨z0, C∗C + A∗PA − R(P)∗Q(P)−1R(P)z0⟩X.
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Definition (CARE)
P ∈ L(X) is called a solution to the control algebraic Riccati equation (CARE)
associated to Σ if

P = C∗C + A∗PA − R(P)∗Q(P)−1R(P).

Proposition (Characterisation of optimizability via the CARE)
If Σ is optimizable, then Π is a solution to the CARE.
If the CARE has a self-adjoint and nonnegative solution, then Σ is optimizable.

([OC04], Lemma 3.3)

Jannik Daun LQ Optimal Control for Discrete Time Systems 13 / 16



LQ optimal control in discrete-time
Discrete-time systems
LQ optimal control via state feedback
The CARE and the FARE

Definition (FARE)
P ∈ L(X) is called a solution to the filter algebraic Riccati equation (FARE)
associated to Σ if P is a solution to the CARE associated to the adjoint system
(A∗, C∗, B∗, D∗).

Theorem (Sufficient condition for uniqueness of solution to the CARE)
Assume that the FARE has a self-adjoint and nonnegative solution.
Let Π0 ∈ L(X) be a self-adjoint and nonnegative solution to the CARE with

r(A + BF(Π0)) < 1,

where r denotes the spectral radius.
Then Π0 is the unique self-adjoint and nonnegative solution to the CARE.

([OC04], Lemma 3.7)
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Proposition (Reduction to finite dimension)
Let:

X := L2([0, 1],Cn), U := L2([0, 1],Cp), Y := L2([0, 1],Cm),
Ad ∈ Cn×n, Bd ∈ Cn×p, Cd ∈ Cm×n, Dd ∈ Cm×p, Pd ∈ Cn×n,
A, B, C, D, P := acting by multiplication with Ad , Bd , Cd , Dd , Pd on L2.

Then:
If Pd is a self-adjoint, nonnegative solution to the CARE/FARE associated to
(Ad , Bd , Cd , Dd), then P is a self-adjoint, nonnegative solution to the
CARE/FARE associated to (A, B, C, D),
The spectral radius of Ad + BdF(Pd) (as a matrix) is equal to the spectral radius
of A + BF(P).
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