Linear-Quadratic Optimal Control for Discrete Time Systems

Jannik Daun

PHSymposium, 2024

- LQ optimal control in discrete-time
 - Discrete-time systems
 - LQ optimal control via state feedback
 - The CARE and the FARE

- 1 LQ optimal control in discrete-time
 - Discrete-time systems
 - LQ optimal control via state feedback
 - The CARE and the FARE

- LQ optimal control in discrete-time
 - Discrete-time systems
 - LQ optimal control via state feedback
 - The CARE and the FARE

Definition (Discrete-time system)

- Discrete-time system $\Sigma := (\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D}) \in L(\mathfrak{X}) \times L(\mathcal{U}, \mathfrak{X}) \times L(\mathfrak{X}, \mathcal{Y}) \times L(\mathcal{U}, \mathcal{Y}),$ where $\mathfrak{X}, \mathcal{U}, \mathcal{Y}$ are Hilbert spaces.
- Output map $y_d: \mathbb{N} \times \mathfrak{X} \times \mathcal{U}^{\mathbb{N}} \longrightarrow \mathcal{Y}$, $y_d(j, z_0, u_d) := \mathcal{C}z_d(j, z_0, u_d) + \mathcal{D}u_d(j)$.

Proposition (Discrete-time Duhamel's principle)

$$\forall z_0 \in \mathfrak{X}, u_d \in \mathcal{U}^{\mathbb{N}}, j \in \mathbb{N} : z_d(j, z_0, u_d) = \mathcal{A}^j z_0 + \sum_{k=0}^{j-1} \mathcal{A}^k \mathcal{B} u_d(j-1-k).$$

- 1 LQ optimal control in discrete-time
 - Discrete-time systems
 - LQ optimal control via state feedback
 - The CARE and the FARE

Definition (Discrete-time cost functional)

$$J_d:\mathfrak{X}\times\mathcal{U}^{\mathbb{N}}\longrightarrow [0,\infty],$$

$$J_d(z_0, u_d) := \sum_{j=0}^{\infty} \|y_d(j, z_0, u_d)\|_{\mathcal{Y}}^2 + \|u_d(j)\|_{\mathcal{U}}^2.$$

Discrete-time Linear-Quadratic (LQ) optimal control problem

For all $z_0 \in \mathfrak{X}$ prove existence and uniqueness of a minimizer of $J_d(z_0, \bullet)$ and find an explicit formula for it.

Definition (Optimizability)

 Σ is called **optimizable** if

$$\forall z_0 \in \mathfrak{X} \,\exists u_d \in \mathcal{U}^{\mathbb{N}} : J_d(z_0, u_d) < \infty.$$

Theorem (Existence and uniqueness of the optimal control)

Assume that Σ is optimizable. Then for every $z_0 \in \mathfrak{X}$ there exists a unique element of $\ell^2(\mathbb{N},\mathcal{U})$ denoted $u_d^{\mathrm{opt}}(\bullet,z_0)$ with

$$J_d(z_0, u_d^{\mathrm{opt}}(\bullet, z_0)) = \inf_{v \in \mathcal{U}^{\mathbb{N}}} J_d(z_0, v).$$

Definition (Optimal output/state)

For $z_0 \in \mathfrak{X}$ let $y_d^{\text{opt}}(\bullet, z_0)$ the output and $z_d^{\text{opt}}(\bullet, z_0)$ the state with input $u_d^{\text{opt}}(\bullet, z_0)$ and initial value z_0 .

Proposition (Continuity and linearity of the optimal control)

Assume that Σ is optimizable. Then:

The map

$$\mathcal{I}:\mathfrak{X}\longrightarrow \ell^2(\mathbb{N},\mathcal{U}) imes\ell^2(\mathbb{N},\mathcal{Y}), \ \mathcal{I}(z_0):=(u_d^{\mathrm{opt}}(ullet,z_0),y_d^{\mathrm{opt}}(ullet,z_0))$$

is linear and bounded.

• The map $\Pi := \mathcal{I}^*\mathcal{I} \in L(\mathfrak{X})$ is self-adjoint, nonnegative and $\forall z_0 \in \mathfrak{X}$:

$$\langle \Pi z_0, z_0 \rangle_{\mathfrak{X}} = \langle \mathcal{I} z_0, \mathcal{I} z_0 \rangle = J_d(z_0, u^{\mathrm{opt}}(\bullet, z_0)).$$

Definition (Feedback operator)

For $P \in L(\mathfrak{X})$ let

$$Q(P) := \mathcal{D}^*\mathcal{D} + I + \mathcal{B}^*P\mathcal{B}, \quad R(P) := \mathcal{D}^*\mathcal{C} + \mathcal{B}^*P\mathcal{A}, \quad \mathcal{F}(P) := -Q(P)^{-1}R(P).$$

The operator $\mathcal{F}(P)$ is called the **feedback operator** associated to P.

Theorem (Optimal control by state feedback)

Assume that Σ is optimizable.

Then $\forall z_0 \in \mathfrak{X}, j \in \mathbb{N}$:

$$z_d^{ ext{opt}}(j, z_0) = (\mathcal{A} + \mathcal{BF}(\Pi))^j z_0,$$

 $u^{ ext{opt}}(j, z_0) = \mathcal{F}(\Pi) z_d^{ ext{opt}}(j, z_0).$

Lemma (Bellman's principle of optimality)

Assume Σ optimizable. Let $z_0 \in \mathfrak{X}$, $u_0 \in \mathcal{U}$, $z_1 := \mathcal{A}z_0 + \mathcal{B}u_0$ and $y_0 := \mathcal{C}z_0 + \mathcal{D}u_0$. Then

$$\langle z_0, \Pi z_0 \rangle_{\mathfrak{X}} \leq \|y_0\|_{\mathcal{Y}}^2 + \|u_0\|_{\mathcal{U}}^2 + \langle z_1, \Pi z_1 \rangle_{\mathfrak{X}}$$

with equality if and only if $u_0 = u^{\mathrm{opt}}(0, z_0)$ and in that case for all $j \in \mathbb{N}$: $u^{\mathrm{opt}}_d(j+1, z_0) = u^{\mathrm{opt}}_d(j, z_1)$.

Lemma (Key lemma)

Let $P \in L(\mathfrak{X})$ self-adjoint and nonnegative. Define

$$G: \mathfrak{X} \times \mathcal{U} \longrightarrow [0, \infty),$$

$$G(z_0, u_0) := ||u_0||_{\mathcal{U}}^2 + ||y_0||_{\mathcal{Y}}^2 + \langle z_1, Pz_1 \rangle_{\mathfrak{X}},$$

where $z_1 := \mathcal{A}z_0 + \mathcal{B}u_0$ and $y_0 := \mathcal{C}z_0 + \mathcal{D}u_0$.

Then for every $z_0 \in \mathfrak{X}$: $G(z_0, \bullet)$ has a unique global minimum at $\mathcal{F}(P)z_0$ and

$$G(z_0, \mathcal{F}(P)z_0) = \langle z_0, \mathcal{C}^*\mathcal{C} + \mathcal{A}^*P\mathcal{A} - R(P)^*Q(P)^{-1}R(P)z_0 \rangle_{\mathfrak{X}}.$$

- 1 LQ optimal control in discrete-time
 - Discrete-time systems
 - LQ optimal control via state feedback
 - The CARE and the FARE

Definition (CARE)

 $P \in L(\mathfrak{X})$ is called a solution to the **control algebraic Riccati equation** (CARE) associated to Σ if

$$P = \mathcal{C}^*\mathcal{C} + \mathcal{A}^*P\mathcal{A} - R(P)^*Q(P)^{-1}R(P).$$

Proposition (Characterisation of optimizability via the CARE)

- If Σ is optimizable, then Π is a solution to the CARE.
- ullet If the CARE has a self-adjoint and nonnegative solution, then Σ is optimizable.

([OC04], Lemma 3.3)

Definition (FARE)

 $P \in L(\mathfrak{X})$ is called a solution to the **filter algebraic Riccati equation** (FARE) associated to Σ if P is a solution to the CARE associated to the **adjoint system** $(\mathcal{A}^*, \mathcal{C}^*, \mathcal{B}^*, \mathcal{D}^*)$.

Theorem (Sufficient condition for uniqueness of solution to the CARE)

Assume that the FARE has a self-adjoint and nonnegative solution.

Let $\Pi_0 \in \mathcal{L}(\mathfrak{X})$ be a self-adjoint and nonnegative solution to the CARE with

$$r(\mathcal{A} + \mathcal{BF}(\Pi_0)) < 1$$
,

where r denotes the spectral radius.

Then Π_0 is the unique self-adjoint and nonnegative solution to the CARE.

([OC04], Lemma 3.7)

Proposition (Reduction to finite dimension)

Let:

- $\mathfrak{X} := L^2([0,1],\mathbb{C}^n), \ \mathcal{U} := L^2([0,1],\mathbb{C}^p), \ \mathcal{Y} := L^2([0,1],\mathbb{C}^m),$
- $A_d \in \mathbb{C}^{n \times n}, B_d \in \mathbb{C}^{n \times p}, C_d \in \mathbb{C}^{m \times n}, D_d \in \mathbb{C}^{m \times p}, P_d \in \mathbb{C}^{n \times n},$
- $\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D}, \mathcal{P} := acting by multiplication with <math>A_d, B_d, C_d, D_d, P_d$ on L^2 .

Then:

- If P_d is a self-adjoint, nonnegative solution to the CARE/FARE associated to (A_d, B_d, C_d, D_d) , then \mathcal{P} is a self-adjoint, nonnegative solution to the CARE/FARE associated to $(\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D})$,
- The spectral radius of $A_d + B_d \mathcal{F}(P_d)$ (as a matrix) is equal to the spectral radius of $\mathcal{A} + \mathcal{B}\mathcal{F}(\mathcal{P})$.

References

For more on discrete-time systems see [OC04] and [OS08].

- [OC04] Mark R. Opmeer and Ruth F. Curtain. "Linear Quadratic Gaussian Balancing for Discrete-Time Infinite-Dimensional Linear Systems". In: *SIAM Journal on Control and Optimization* 43.4 (2004), pp. 1196–1221.
- [OS08] Mark R. Opmeer and Olof J. Staffans. "Optimal state feedback input-output stabilization of infinite-dimensional discrete time-invariant linear systems". In: Complex Anal. Oper. Theory 2.3 (2008), pp. 479–510.