Project 8: Maximal Equicontinuous Factor

Matti Bleckmann, Jannik Daun, Pablo Lummerzheim

Coordinator: Lino Haupt

ISEM28, 2025

Contents

- Equicontinuity
- Maximal equicontinuous factor
 - Definition, ∃!, universal property
 - Eigenfunction characterisation and C^* -algebra approach
 - Relationship to measure preserving system concepts
- The regionally proximal relation
- 4 Example: Skew-Rotation
- 6 m-Equicontinuity
- **6** Thue Morse Subshif

Definition (Topological Dynamical System (TDS))

Let (X,d) be a **compact** metric space and T a topological group and let there be a continuous map $T \times X \to X$ $((t,x) \mapsto tx)$ such that for all $s,t \in T$ and $x \in X$

- \bullet ex = x
- $\bullet (st)x = s(tx).$

Then we call (X, T) a **topological dynamical system** (TDS).

Remark

Note that for each $t \in T$ the map $x \mapsto tx$ is a homeomorphism.

Remark

Let $\alpha: X \to X$ be a homeomorphism. Then this gives rise to a \mathbb{Z} action with $nx := \alpha^n(x)$ for $n \in \mathbb{Z}$. In this case we write (X, α) for this dynamical system.

Definition (Factors and Isomorphisms)

A TDS (Y, T) is a **factor** of (X, T) if there exists a **factor map**, i.e. a surjective and continuous map

$$\pi: X \to Y$$

such that $\pi(tx) = t\pi(x)$ for all $t \in T$, $x \in X$.

A factor map is a **conjugacy** (of TDS) if it is a homeomorphism.

Two TDS are conjugated if there exists an conjugacy between them.

Definition (ICER and Quotient)

An **invariant closed equivalence relation** (ICER) $R \subseteq X \times X$ is a equivalence relation, such that R is closed and tR = R for all $t \in T$.

Then the quotient X/R becomes a TDS with t[x] := [tx] for all $t \in T$ and $x \in X$.

Proposition

Let $R \subseteq X \times X$ be an ICER. Then we can define a factor by

$$\pi_R: X \to X/R \quad \pi_R(x) := [x] \quad \forall x \in X.$$

Let $\pi:X\to Y$ be a factor map. Then we can define an ICER by

$$R_{\pi} := \{(x,y) \in X \times X \mid \pi(x) = \pi(y)\}.$$

In this case we have $(Y, T) \cong (X/R_{\pi}, T)$.

Definition (Conjugated and Equivalent factors)

Let (Y, T) and (Z, T) be two factors of (X, T) with factor maps π and ρ .

The factors are **equivalent** if $R_{\pi} = R_{\rho}$.

The factors are **conjugated** if $(Y, T) \cong (Z, T)$.

Definition (Equicontinuous TDS)

The TDS (X, T) is **equicontinuous** if for $\varepsilon > 0$ there is some $\delta > 0$ such that $d(x, y) < \delta \Rightarrow d(tx, ty) < \varepsilon$

for all $x, y \in X$ and $t \in T$.

Remark

Intuitively equicontinuity means that two points that are close, were always and will always be close.

Definition (Equicontinuous TDS)

The TDS (X, T) is **equicontinuous** if for $\varepsilon > 0$ there is some $\delta > 0$ such that $d(x, y) < \delta \Rightarrow d(tx, ty) < \varepsilon$

for all $x, y \in X$ and $t \in T$.

Proposition

Let d, \tilde{d} be two metrics on X, that induce the same topology. Then (X, T) is equicontinuous with respect to \tilde{d} if and only if it is equicontinuous with respect to \tilde{d} .

Proposition

For an equicontinuous action we can always choose a metric, inducing the same topology, that is invariant under the action.

Definition (Equicontinuous TDS)

The TDS (X, T) is **equicontinuous** if for $\varepsilon > 0$ there is some $\delta > 0$ such that $d(x, y) < \delta \Rightarrow d(tx, ty) < \varepsilon$

for all $x, y \in X$ and $t \in T$.

Proposition

Equicontinuity is preserved under conjugacies, (countable) products and subsystems.

Example: Circle Rotations \mathbb{Z} -action

We look at the circle $\mathbb{T} := \mathbb{R}/\mathbb{Z}$ (identify $[x] = x + \mathbb{Z}$ for $x \in \mathbb{R}$ with $e^{2\pi ix}$ in \mathbb{C}).

The metric on \mathbb{T} is given by

$$d_{\mathbb{T}}([x],[y]) := \min_{n \in \mathbb{Z}} |x - y + n|.$$

Fix $a \in \mathbb{R}$ and define

$$r_a([x]) := [x+a].$$

The TDS (\mathbb{T}, r_a) is minimal iff $a \notin \mathbb{Q}$.

We have for $[x], [y] \in \mathbb{S}$ and $n \in \mathbb{Z}$ that $d_{\mathbb{T}}(r_a^n([x]), r_a^n([y])) = d_{\mathbb{T}}([x], [y]),$ i.e. r_a is isometric. Equicontinuity is an immediate consequence.

Contents

- Equicontinuity
- Maximal equicontinuous factor
 - Definition, ∃!, universal property
 - Eigenfunction characterisation and C^* -algebra approach
 - Relationship to measure preserving system concepts
- The regionally proximal relation
- 4 Example: Skew-Rotation
- 6 m-Equicontinuity
- 6 Thue Morse Subshift

Contents

- Equicontinuity
- Maximal equicontinuous factor
 - Definition, ∃!, universal property
 - Eigenfunction characterisation and C^* -algebra approach
 - Relationship to measure preserving system concepts
- The regionally proximal relation
- 4 Example: Skew-Rotation
- 6 m-Equicontinuity
- 6 Thue Morse Subshift

Let (X, T) be a TDS.

Definition (maximal equicontinuous factor (MEF))

A factor $\pi:(X,T)\to (X_{\mathsf{MEF}},T)$ is a **MEF** of (X,T) if and only if

- (X_{MEF}, T) is equicontinuous,
- π is maximal: $\forall \varphi : (X, T) \to (Y, T)$ factor s.t. (Y, T) equicontinuous: $R_{\pi} \subseteq R_{\varphi}$.

Theorem (existence and uniqueness of the MEF)

(X, T) has a MEF that is unique up to equivalence.

Example (MEF of equicontinuous TDS is original TDS)

(X, T) equicontinuous, then $I: (X, T) \rightarrow (X, T)$ is the MEF of (X, T).

Proposition (universal property of the MEF)

Let
$$\pi:(X,T)\to(X_{MEF},T)$$
 be the MEF.

 $\forall \varphi: (X,T) \rightarrow (Y,T)$ factor with (Y,T) equicontinuous:

 $\exists ! \textit{factor } ilde{arphi} : (X_{\textit{MEF}}, T)
ightarrow (Y, T) : arphi = ilde{arphi} \circ \pi$

Contents

- Equicontinuity
- Maximal equicontinuous factor
 - Definition, ∃!, universal property
 - Eigenfunction characterisation and C^* -algebra approach
 - Relationship to measure preserving system concepts
- The regionally proximal relation
- 4 Example: Skew-Rotation
- 6 m-Equicontinuity
- 6 Thue Morse Subshift

(X,T) TDS with T abelian, T^{\sharp} (T^*) the set of all (continuous) characters of T.

Definition (Koopman representation)

$$U: T \longrightarrow \mathcal{L}(C(X))$$
$$(U(t)f)(x) := f(tx)$$

Remark

T-action continuous on $T \times X \Rightarrow U$ strongly continuous T-representation (for proof see [EFHN15], Theorem 4.17)

Definition (eigenvalue, eigenfunction)

$$0 \neq f \in C(X)$$
 eigenfunction of U to eigenvalue $\chi \in T^*$
: $\Leftrightarrow f \in \ker(U - \chi) := \bigcap_{t \in T} \ker(U(t) - \chi(t)I)$

Definition (discrete spectrum)

$$(X, T)$$
 has (TDS) **discrete spectrum** : $\Leftrightarrow C(X) = \overline{\lim} \bigcup_{\chi \in T^*} \ker(U - \chi)$

Theorem (equicontinuity ⇔ discrete spectrum)

(X, T) is equicontinuous \Leftrightarrow (X, T) has discrete spectrum (for proof see [HK23], Theorem 2.11)

Theorem (MEF eigenfunction characterisation)

Let
$$\pi: (X, T) \to (X_{\mathsf{MEF}}, T)$$
 be the MEF. Then $\forall x_1, x_2 \in X$:

$$\pi(x_1) = \pi(x_2) \Leftrightarrow \forall f \in \bigcup_{\chi \in T^*} \ker(U - \chi) : f(x_1) = f(x_2)$$

Intermezzo: Duality of categories!

- $C := \text{category of commutative unital } C^* \text{algebras},$
- D := category of compact Hausdorff spaces,
- contravariant Gelfand functor $G: \mathbf{C} \to \mathbf{D}$, $G(\mathscr{A}) := \{ \varphi : \mathscr{A} \to \mathbb{C} \mid \varphi \text{ morphism} \}$ with the weak-* topology, $G(\Psi : \mathscr{A} \to \mathscr{B}) : G(\mathscr{B}) \to G(\mathscr{A}), \ \varphi \mapsto \varphi \circ \Psi$,
- contravariant continuous function functor $C : \mathbf{D} \to \mathbf{C}$, $X \mapsto C(X)$, $C(f : X \to Y) : C(Y) \to C(X)$, $g \mapsto g \circ f$,
- evaluation map eval : $I \Rightarrow GC$, eval(x)f := f(x) is natural isomorphism,
- Gelfand transform $\hat{}: I \Rightarrow CG$, $\hat{a}(\varphi) := \varphi(a)$ is natural isomorphism.

MEF via C*-algebras

- $\mathscr{A} := \overline{\lim} \bigcup_{\chi \in T^*} \ker(U \chi) \subseteq C(X)$,
- A is smallest unital C*-subalgebra containing all eigenfunctions of U,
- $\mathscr A$ *U*-invariant \to *T*-action on $G(\mathscr A)$: $t \cdot \varphi := G(U(t))\varphi,$
- $\iota: \mathscr{A} \to C(X)$ natural injection,
- $G(\iota): G(C(X)) \to G(\mathscr{A}),$
- MEF of (X, T) is $\pi: (X, T) \to (G(\mathscr{A}), T),$ $\pi:=G(\iota) \circ \mathsf{eval},$

• $^{ }$: $I \Rightarrow CG$ natural:

$$\begin{array}{ccc}
\mathscr{A} & \xrightarrow{\qquad} & C(G(\mathscr{A})) \\
\downarrow & & & \downarrow \\
C(X) & \xrightarrow{\qquad} & C(G(C(X)))
\end{array}$$

- $G(\iota)$ surjective $\Leftrightarrow C(G(\iota))$ injective $\Leftrightarrow \iota$ injective,
- let $x_1, x_2 \in X$: $\pi(x_1) = \pi(x_2) \Leftrightarrow \forall f \in \mathscr{A} : f(x_1) = f(x_2)$ $\Leftrightarrow \forall f \in \bigcup_{\chi \in T^*} \ker(U - \chi) : f(x_1) = f(x_2).$

Contents

- Equicontinuity
- Maximal equicontinuous factor
 - Definition, ∃!, universal property
 - Eigenfunction characterisation and C^* -algebra approach
 - Relationship to measure preserving system concepts
- The regionally proximal relation
- 4 Example: Skew-Rotation
- 6 m-Equicontinuity
- 6 Thue Morse Subshift

MEF vs. Kronecker subsystem

T still abelian

$$(X, T)$$
 TDS

- Koopman rep. $U: T \to \mathcal{L}(C(X))$,
- (X, T) has discrete spectrum $\Leftrightarrow \overline{\lim} \bigcup_{\chi \in T^*} \ker(U \chi) = C(X)$,
- MEF: associated to the *U*-invariant C*-subalgebra

$$\overline{\lim} \bigcup_{\chi \in T^*} \ker(U - \chi) \subseteq C(X).$$

(Y, T) measure preserving system (MPS)

- ullet Koopman rep. $V: \mathcal{T}
 ightarrow \mathscr{L}(L^2(Y))$,
- (Y, T) has discrete spectrum $\Leftrightarrow \overline{\lim} \bigcup_{\chi \in T^{\sharp}} \ker(V \chi) = L^{2}(Y)$,
- Kronecker subsystem: associated to the V-invariant Markov sublattice $\overline{\lim} \bigcup_{\chi \in T^{\sharp}} \ker(V \chi) \subseteq L^{2}(Y).$

MEF is the TDS analogue of the Kronecker subsystem!

Contents

- Equicontinuity
- Maximal equicontinuous factor
 - Definition, ∃!, universal property
 - Eigenfunction characterisation and C^* -algebra approach
 - Relationship to measure preserving system concepts
- The regionally proximal relation
- 4 Example: Skew-Rotation
- 6 m-Equicontinuity
- 6 Thue Morse Subshift

Definition (regionally proximal relation)

Let (X,T) be a TDS. Two points $x,y\in X$ are called *regionally proximal* if for each $\varepsilon>0$ there exist $x'\in B_{\varepsilon}(x), y'\in B_{\varepsilon}(y)$ and $t\in T$ such that $d(tx',ty')<\varepsilon$. We denote the set of regionally proximal pairs by $Q_2(X)\subseteq X\times X$.

Definition (regionally proximal relation)

Let (X,T) be a TDS. Two points $x,y\in X$ are called *regionally proximal* if for each $\varepsilon>0$ there exist $x'\in B_{\varepsilon}(x), y'\in B_{\varepsilon}(y)$ and $t\in T$ such that $d(tx',ty')<\varepsilon$. We denote the set of regionally proximal pairs by $Q_2(X)\subseteq X\times X$.

Equivalently: There is
$$(x_n)$$
, (y_n) in X and (t_n) in T , s.t. $x_n \to x$, $y_n \to y$ and $d(t_n x_n, t_n y_n) \to 0$.

and

$$Q_2(X) = \bigcap_{U \in \mathcal{U}(\Delta(X))} \overline{TU}$$

with $\Delta(X) = \{(x, x) \mid x \in X\}$ the diagonal in $X \times X$.

Theorem

The regionally proximal relation is closed, invariant, symmetric and reflexive.

- symmetric and reflexive by definition
- closed, since intersection of closed sets
- **3** invariant: $(x,y) \in Q_2(X)$, i.e. $d(t_n x_n, t_n y_n) \to 0$ then $d(t_n t_0^{-1} t_0 x_n, t_n t_0^{-1} t_0 y_n) \to 0$.

Not transitive in general! See Example.

Let X=[0,2] and $T=\mathbb{R}$. Then the following map is an \mathbb{R} -action on [0,2] and defines a TDS.

$$\mathbb{R} \times [0,2] \rightarrow [0,2]$$

$$(t,x)\mapsto tx:= egin{cases} 0 & x=0 \ rac{1}{1+(rac{1}{x}-1)e^{-t}} & x\in(0,1] \ rac{1}{1+(rac{1}{x-1}-1)e^{-t}}+1 & x\in(1,2] \end{cases}$$

Every point greater 0 and smaller 1 tends to 1 and every point greater 1 tends to 2 with $t \to \infty$.

We also observe that $\{0\}$, $\{1\}$ and $\{2\}$ are closed invariant.

Consider the system from the previous slide.

The pairs (0,1) and (1,2) are regionally proximal.

But (0,2) is not a regionally proximal pair.

For 0 and 1 we have:

With t large enough:

Proposition

Let $\varphi:(X,T)\to (Y,T)$ a factor. Then $(\varphi\times\varphi)(Q_2(X))\subseteq Q_2(Y)$.

Theorem

Let (X,T) a TDS and $\varphi:(X,T)\to (Y,T)$ an equicontinuous factor. Let R_{φ} the ICER generated by φ . Then $Q_2(X)\subseteq R_{\varphi}$.

Proof by contradiction using the invariant metric.

Corollary

Let (X, T) be an equicontinuous TDS. Then $Q_2(X) = \Delta(X)$.

The identity map with $\Delta(X)$ as ICER is an equicontinuous factor.

Since the MEF is an equicontinuous factor, we have

Corollary

Let (X, T) be a TDS and R_{MEF} the ICER generated by the MEF. Then $Q_2(X) \subseteq R_{MEF}$.

Do we also have $R \subseteq Q_2(X)$?

But first:

Definition (topologically weakly mixing)

Let (X, T) be a TDS. Then (X, T) is called *weakly mixing* if every non-empty, T-invariant and open $U \subseteq X \times X$ is dense in $X \times X$.

Proposition (weakly mixing systems have trivial Q_2)

Let (X, T) be a weakly mixing TDS. Then $Q_2(X) = X \times X$.

Using the theorem of Baire and the characterization of the regionally proximal equation using intersections.

Corollary (MEF of weakly mixing system)

The MEF of a weakly mixing system is trivial.

Since
$$Q_2(X) = X \times X \subseteq R_{\mathsf{MEF}}$$
.

$$(X, T)$$
 equicontinuous

(X, T) weakly mixing

- MEF is the identity map, biggest possible factor
- $Q_2(X) = \Delta(X)$, smallest possible reflexive relation
- MEF is one-point system, smallest possible factor
- $Q_2(X) = X \times X$, biggest possible relation

We have $Q_2(X) = R_{MEF}$ with some assumptions.

Theorem

Let (X, T) be a minimal TDS with an invariant Borel probability measure and R_{MEF} be the ICER associated with the MEF of X. Then $Q_2(X) = R_{MEF}$.

Note that minimality is important for $Q_2(X)$ being an equivalence relation (see Example). For a proof see [Aus88, p.130, Thm. 8.].

The condition of having an invariant Borel probability measure is always satisfied for abelian groups.

Contents

- Equicontinuity
- Maximal equicontinuous factor
 - Definition, ∃!, universal property
 - Eigenfunction characterisation and C^* -algebra approach
 - Relationship to measure preserving system concepts
- The regionally proximal relation
- 4 Example: Skew-Rotation
- 6 m-Equicontinuity
- 6 Thue Morse Subshift

Fix $a \in \mathbb{R} \setminus \mathbb{Q}$ and look at $\mathbb{T}^2 = \mathbb{R}/\mathbb{Z} \times \mathbb{R}/\mathbb{Z}$ with the skew rotation $\alpha : \mathbb{T}^2 \to \mathbb{T}^2$ with $\alpha([x_1], [x_2]) := ([x_1 + a], [x_2 + x_1]).$

The arising TDS $(\mathbb{T}^2, \mathbb{Z})$ is minimal and not equicontinuous.

Example

The MEF of the skew-ration (\mathbb{T}^2, α) is given by the circle rotation (\mathbb{T}, r_a) with factor map π given by $([x_1], [x_2]) \mapsto [x_1]$.

We need to prove that

$$Q_2(\mathbb{T}^2) = R_{\pi} = \{(([x_1], [x_2]), ([y_1], [y_2])) \in \mathbb{T}^2 \times \mathbb{T}^2 | [x_1] = [y_1]\}.$$

We already know that (\mathbb{T}, r_a) is equicontinuous, which implies $Q_2(\mathbb{T}^2) \subseteq R_{\pi}$.

For the other direction we prove that $(([z],[x]),([z],[y])) \in R_{\pi}$ is regional proximal.

Fix $\varepsilon > 0$. W.l.o.g. $0 \le x \le y < 1$. Choose some $0 < b < \frac{\varepsilon}{2}$ and $n \in \mathbb{N}_0$ such that $0 \le (y - x) - nb < \frac{\varepsilon}{2}$.

Then ([z+b],[x]) and ([z],[y]) are in the ε balls around ([z],[x]) and ([z],[y]) and $d_{\mathbb{T}^2}(\alpha^n([z+b],[x]),\alpha^n([z],[y]))$

$$=d_{\mathbb{T}^2}(([z+b+na],[x+n(z+b)+\frac{n(n+1)}{n}a]),([z+na],[y+nz+\frac{n(n+1)}{2}a]))$$

$$\leq b+x-y-nb<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon$$

Remark

Note that for $([z],[x]) \in \mathbb{T}^2$ and $n \in \mathbb{N}$ we have

$$\alpha^{n}([z],[x]) = ([z+na],[x+nz+\frac{n(n-1)}{2}a]).$$

Contents

- Equicontinuity
- Maximal equicontinuous factor
 - Definition, ∃!, universal property
 - Eigenfunction characterisation and C^* -algebra approach
 - Relationship to measure preserving system concepts
- The regionally proximal relation
- 4 Example: Skew-Rotation
- 6 m-Equicontinuity
- **6** Thue Morse Subshif

Definition (*m*-Equicontinuity [GL25; Jin05])

Fix $m \in \mathbb{N}$. Then (X,T) is m-equicontinuous if for all $\varepsilon > 0$ there exists a $\delta > 0$, such that for all $U \subseteq X$ open with $\operatorname{diam}(U) < \delta, x_1, \ldots, x_m \in U$ and $t \in T$ there are $i, j \in \{1, \ldots, m\}$ with $i \neq j$ such that $d(tx_i, tx_j) < \varepsilon$.

Proposition

If (X, T) is m-equicontinuous for some $m \in \mathbb{N}$ it is also m'-equicontinuous for all m' > m.

Proof is clear by definition.

Note that the "normal" equicontinuity is 2-equicontinuity.

Definition (m-MEF)

Fix $m \in \mathbb{N}$ with $m \geq 2$. Assume that (X,T) is a minimal TDS and let its MEF be given by $\pi_{\mathrm{MEF}}: X \to X_{\mathrm{MEF}}$. Let $R_{\pi_{\mathrm{MEF}}}$ be the ICER generated by π_{MEF} . Let $\pi: (X,T) \to (Y,T)$ be a factor and R_{π} the ICER generated by π . Then π is called a m-MEF if

$$\forall A \in X/R_{\pi_{\mathrm{MEF}}} \exists B_1, \ldots, B_{m-1} \in X/R_{\pi} : A = \bigcup_{i=1}^{m-1} B_i.$$

Note that the indices of the B_i only go up to m-1! As before, we have:

Remark

Any m-MEF is also an m'-MEF for all m' > m since the B_i in the definition of an m-MEF need not be pairwise distinct.

Importantly, we have

Proposition (Lemma 4.14 in [GL25])

Fix $m \in \mathbb{N}$ with $m \ge 2$. Let $\pi : (X, T) \to (Y, T)$ be an m-MEF. Then (Y, T) is m-equicontinuous.

Generalizations

We can generalize

- **1** the regionally proximal relation to an *m*-regionally proximal relation $Q_m(X) \subset X^m$.
- 2 the diagonal to

$$\Delta^m(X):=\{(x_1,\ldots,x_m)\in X^m\mid \text{there are } i,j\in\{1,\ldots,m\} \text{ such that } x_i=x_j\}.$$

And get similarly to before

Theorem (Theorem 4.6 in [GL25])

Let (X,T) be a minimal TDS. Then (X,T) is m-equicontinuous if and only if $Q_m(X)\setminus \Delta^m(X)=\varnothing$ for $2\leq m\in \mathbb{N}$.

Theorem ([GL25])

Let (X,T) be a minimal TDS and $\pi: X \to X_{MEF}$ its MEF. Then (X,T) is m-equicontinuous if and only if $\#\pi^{-1}(\{y\}) < m$ for all $y \in X_{MEF}$.

Contents

- Equicontinuity
- Maximal equicontinuous factor
 - Definition, ∃!, universal property
 - Eigenfunction characterisation and C^* -algebra approach
 - Relationship to measure preserving system concepts
- The regionally proximal relation
- 4 Example: Skew-Rotation
- 6 m-Equicontinuity
- Thue Morse Subshift

Let σ be the left shift on $\{0,1\}^{\mathbb{Z}}$. Then $(\{0,1\}^{\mathbb{Z}},\sigma)$ is a TDS.

Example (Thue Morse Subshift)

Take the substitution

$$egin{cases} 0\mapsto 01\ 1\mapsto 10 \end{cases}.$$

It has a fixed point $v \in \{0,1\}^{\mathbb{Z}}$ and gives a minimal subshift

$$X:=\overline{\{\sigma^nv|\ n\in\mathbb{Z}\}}.$$

Example (Period Doubling Subshift)

Take the substitution

$$egin{cases} 0\mapsto 01\ 1\mapsto 00 \end{cases}.$$

It has a fixed point $w \in \{0,1\}^{\mathbb{Z}}$ and gives a minimal subshift

$$Y:=\overline{\{\sigma^nw|\ n\in\mathbb{Z}\}}.$$

Then there is a 2-to-1 factor $\pi: X \to Y$ defined by

$$\pi((a_n)_{n\in\mathbb{Z}}):=egin{cases} 0 & ext{; } a_n
eq a_{n+1} \ 1 & ext{; } a_n=a_{n+1} \end{cases}.$$

Dyadic Odometer

The dyadic integers are given by

$$\begin{split} \mathbb{Z}_2 &:= \varprojlim_{k \to \infty} \mathbb{Z}/2^k \mathbb{Z} \\ &\cong \{(a_k)_{k \in \mathbb{N}} \in \prod_{k \in \mathbb{N}} \{0, \dots, 2^k - 1\} | \ a_{k+1} \in \{a_k, a_k + 2^k\} \}. \end{split}$$

Equipped with pointwise addition they form a compact abelian group.

Define $\eta := (1, 1, \dots) \in \mathbb{Z}_2$ and define $d : \mathbb{Z}_2 \to \mathbb{Z}_2$ by $d(a) := a + \eta$. Then (\mathbb{Z}_2, d) is a minimal equicontinuous TDS called the **dyadic odometer**.

There is a factor map $\rho: Y \to \mathbb{Z}_2$, which is at most 2-to-1. In particular \mathbb{Z}_2 is the MEF of (Y, T) and (X, T).

Putting this together we have

Thue Morse subshift:
$$(X, \sigma)$$
 5-equicontinuous π : \downarrow period doubling subshift: (Y, σ) 3-equicontinuous

dyadic odometer: (\mathbb{Z}_2,d) (2-)equicontinuous.

In particular (\mathbb{Z}_2, d) is the MEF of (X, σ) and (Y, σ) . Also (Y, σ) is a 3-MEF of (X, σ) .

Note that however the MEF of $(\{0,1\}^{\mathbb{Z}}, \sigma)$ is trivial.

Thanks for your attention!

References

Joseph Auslander. *Minimal Flows and their Extensions*. North-Holland, 1988.

Tanja Eisner, Bálint Farkas, Markus Haase, and Rainer Nagel. *Operator theoretic aspects of ergodic theory*. Graduate Texts in Mathematics. Springer, 2015.

Felipe García-Ramos and Irma León-Torres. "Coincidence rank and multivariate equicontinuity". In: *Nonlinearity* 38.7 (June 2025), p. 075024. DOI: 10.1088/1361-6544/ade190. URL: https://dx.doi.org/10.1088/1361-6544/ade190.

Patrick Hermle and Henrik Kreidler. "A Halmos-von Neumann Theorem for Actions of General Groups". In: *Applied Categorical Structures* (2023).

Xiong Jincheng. "Chaos in a topologically transitive system". In: Science in China Series A: Mathematics 48.7 (July 2005), pp. 929–939. ISSN: 1862-2763. DOI: 10.1007/bf02879075. URL: http://dx.doi.org/10.1007/BF02879075.